04469nam 2200565Ia 450 991095390790332120251116181424.01-61761-951-5(CKB)2550000001040577(EBL)3017677(SSID)ssj0001074061(PQKBManifestationID)11600543(PQKBTitleCode)TC0001074061(PQKBWorkID)11187178(PQKB)10837042(MiAaPQ)EBC3017677(Au-PeEL)EBL3017677(CaPaEBR)ebr10654648(OCoLC)923653238(BIP)14338228(EXLCZ)99255000000104057720021011d2010 uy 0engur|n|---|||||txtccrAdvances in laser and optics researchVolume 3 /William T. Arkin, editor1st ed.New York Nova Sciencec20101 online resource (208 p.)Advances in Laser and Optics Research ;v.3Description based upon print version of record.1-59033-855-3 Includes bibliographical references and index.CONTENTS -- PREFACE -- ADVANCES IN COPPER LASER TECHNOLOGY:KINETIC ENHANCEMENT -- 1. Introduction -- 2. Background -- 2.1. Role of Pre-Pulse Electron Density -- 2.2. Engineering the Pre-Pulse Electron Density -- 3. Operating Characteristics of KE-CVLs -- 3.1. Output Power and Efficiency -- 3.2. Pulse Rate Scaling of KE-CVLS -- 3.3. Specific Average-Output Power Scaling -- 3.4. Temporal Characteristics of KE-CVL Output -- 3.5. Spatial Characteristics of KE-CVL Output -- 3.6. High Beam Quality Operation of KE-CVLs -- 4. Diagnostics of Kinetically Enhanced CVLs -- 4.1. Copper Density Measurement -- 4.2. Computer Modelling of KE-CVLs -- 5. Operation of KE-CVLS in Oscillator-Amplifier Configuration -- 6. High Power UV Generation from KE-CVLs -- MERGING QUANTUM THEORY INTO CLASSICALPHYSICS -- Abstract -- 1. Introduction -- 2. Comparison of Classical and Quantum Electrodynamics -- 2.1. Modes of the Electromagnetic Waves -- 2.2. Elementary Light-Matter Interaction in Classical Optics -- 2.3. The Classical Zero Point Field -- 2.4. The Zero Point Field and the Detection of Low Level Light -- 2.5. Spontaneous Emission and Absorption: Einstein's Coefficients -- 2.6. Mechanism of Emission and Absorption of a Photon -- 2.7. Comparison of Quantum and Classical Electrodynamics -- 3. Some Properties of Nonlinear Waves: The (3+0)D Solitons -- 3.1. The Filaments of Light -- 3.2. Perturbation of a Filament by a Magnetic Nonlinearity -- 4. Tentative Setting of a Classical Theory Including the Important Quantum Results -- 4.1. Is Matter Made of Electromagnetic (3+0)D Solitons? -- 4.2. Inserting the Quantum Calculation of Energies into the Classical Theory -- 5. Conclusion -- A POSSIBLE SCENARIO FOR VOLUMETRICDISPLAY THROUGH NANOPARTICLE SUSPENSIONS -- STATISTICAL PROPERTIES OF NONLINEARPHASE NOISE -- 1. Introduction -- 2. Joint Statistics of Nonlinear Phase Noise and Electric Field -- 2.1. Normalization of Nonlinear Phase Noise -- 2.2. Series Expansion -- 2.3. Joint Characteristic Function -- 3. The Probability Density Function of Nonlinear Phase Noise -- 4. Some Joint Characteristic Functions -- 4.1. Joint Characteristic Function of Nonlinear Phase Noise and Received Intensity -- 4.2. Joint Characteristic Function of Nonlinear Phase Noise and Phase of Amplifier Noise -- 5. Error Probability of DPSK Signal -- 5.1. Phase Distribution -- 5.2. Error Probability -- 5.3. Approximation of Independence -- 5.4. Numerical Results -- 6. Compensation of Nonlinear Phase Noise -- 6.1. Linear Compensation -- 6.2. Nonlinear Compensation.Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This series presents leading edge research on optics and lasers from researchers around the globe.Advances in Laser and Optics ResearchLasersResearchOpticsResearchLasersResearch.OpticsResearch.Arkin William T1861314MiAaPQMiAaPQMiAaPQBOOK9910953907903321Advances in laser and optics research4467400UNINA