03962nam 22006495 450 991088288790332120240827130224.03-031-61037-710.1007/978-3-031-61037-0(MiAaPQ)EBC31619002(Au-PeEL)EBL31619002(CKB)34332546000041(DE-He213)978-3-031-61037-0(EXLCZ)993433254600004120240827d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMachine Learning Approaches in Financial Analytics /edited by Leandros A. Maglaras, Sonali Das, Naliniprava Tripathy, Srikanta Patnaik1st ed. 2024.Cham :Springer Nature Switzerland :Imprint: Springer,2024.1 online resource (485 pages)Intelligent Systems Reference Library,1868-4408 ;2543-031-61036-9 -- Part I: Foundations. -- Chapter 1: Introduction to Optimal Execution. -- Part II: Tools and techniques. -- Chapter 2: Python Stack for Design and Visualization in Financial Engineering. -- Chapter 3: Neurodynamic approaches to cardinality-constrained portfolio optimization. -- Chapter 4: Fully Homomorphic Encrypted Wavelet Neural Network for Privacy-Preserving Bankruptcy Prediction in Banks. -- Chapter 5: Tools and Measurement Criteria of Ethical Finance through Computational Finance. -- Chapter 6: Data Mining Techniques for Predicting the Non-Performing Assets (NPA) of Banks in India. -- Chapter 7: Multiobjective optimization of mean-variance-downside-risk portfolio selection models. -- Part III: Risk assessment and ethical considerations. -- Chapter 8: Bankruptcy Forecasting Of Indian Manufacturing Companies Post Ibc Using Machine Learning Techniques. -- Chapter 9: Ensemble Deep Reinforcement Learning for Financial Trading. Part IV: Real-world Applications. -- Chapter 10: Bibliometric Analysis of Digital Financial Reporting. -- Chapter 11: The Quest for Financing Environmental Sustainability in Emerging Nations: Can Internet Access and Financial Technology be Crucial? -- Chapter 12: A comprehensive review of Bitcoin’s energy consumption and its environmental implications, etc.This book addresses the growing need for a comprehensive guide to the application of machine learning in financial analytics. It offers a valuable resource for both beginners and experienced professionals in finance and data science by covering the theoretical foundations, practical implementations, ethical considerations, and future trends in the field. It bridges the gap between theory and practice, providing readers with the tools and knowledge they need to leverage the power of machine learning in the financial sector responsibly.Intelligent Systems Reference Library,1868-4408 ;254Computational intelligenceMachine learningFinancial engineeringArtificial intelligenceComputational IntelligenceMachine LearningFinancial EngineeringArtificial IntelligenceComputational intelligence.Machine learning.Financial engineering.Artificial intelligence.Computational Intelligence.Machine Learning.Financial Engineering.Artificial Intelligence.006.3Maglaras Leandros A1739442Das Sonali1713153Tripathy Naliniprava1766148Patnaik Srikanta1429258MiAaPQMiAaPQMiAaPQBOOK9910882887903321Machine Learning Approaches in Financial Analytics4209911UNINA