13709nam 22006855 450 991087959000332120240811124728.0981-9722-45-410.1007/978-981-97-2245-7(MiAaPQ)EBC31596722(Au-PeEL)EBL31596722(CKB)33830873300041(DE-He213)978-981-97-2245-7(EXLCZ)993383087330004120240811d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierProceedings of the 5th International Symposium on Plasma and Energy Conversion iSPEC2023, 27–29 October, Nanjing, China /edited by Zhi Fang, Cheng Zhang, Danhua Mei, Shuai Zhang1st ed. 2024.Singapore :Springer Nature Singapore :Imprint: Springer,2024.1 online resource (725 pages)Springer Proceedings in Physics,1867-4941 ;398981-9722-44-6 Intro -- Preface -- Contents -- Contributors -- Part I Basic Process, Diagnosis and Simulation in Plasmas -- 1 Research on a Self-balancing Pulsed AC Corona Ionizer -- 1.1 Introduction -- 1.2 The Structure of the Pulse High-Voltage Ionizer -- 1.3 Main Circuit Design -- 1.3.1 The Principle of the Main Circuit -- 1.3.2 Royer Oscillator Circuit -- 1.3.3 Voltage Doubling Rectifier Circuit -- 1.4 Adjustment Control Method -- 1.4.1 Improved Buck Circuit Operating Principle -- 1.4.2 Digital PWM Generation -- 1.4.3 Incremental PI Adjustment -- 1.5 Experiment -- 1.5.1 Pulsed AC High Voltage Power Supply Test -- 1.5.2 Performance Tests of Ionizer -- 1.6 Conclusion -- References -- 2 Characteristic Analysis of Intermediate Frequency Vacuum Arc Based on Stereo Vision Technology -- 2.1 Introduction -- 2.2 Experimental System -- 2.3 Experimental Phenomena -- 2.3.1 Extinguishing of Intermediate Frequency Vacuum Arc -- 2.3.2 Post-arc Breakdown of Intermediate Frequency Vacuum Arc -- 2.4 Process Analysis of Post Arc of Intermediate Frequency Vacuum Arc -- 2.4.1 Calculation of Arc Pressure Gradient -- 2.4.2 Mapping of Arc Plane Coordinate System into Spatial Coordinate System -- 2.4.3 Post Arc Pressure and Metal Evaporation of Intermediate Frequency Vacuum Arc -- 2.5 Conclusion -- References -- 3 The Effect of Various Coil Parameters on Inductively Coupled Plasma Reactor: A Numerical Simulation -- 3.1 Introduction -- 3.2 Model Description -- 3.2.1 Electromagnetic Field Equation -- 3.2.2 Flow Field and Temperature Field Equations -- 3.2.3 Establishment of Theoretical Model -- 3.3 Results and Discussion -- 3.3.1 The Effect of Coil Numbers of ICP -- 3.3.2 The Effect of Coil Distance of ICP -- 3.3.3 The Effect of Coil Radius of ICP -- 3.4 Conclusion -- References -- 4 A Simulation Model for Dielectric Barrier Discharge Considering Finite Trap Density.4.1 Introduction -- 4.2 Numerical Simulation Model -- 4.2.1 Model Equation -- 4.2.2 Boundary Condition -- 4.2.3 Calculation of Secondary Electrons Emission Coefficient -- 4.3 Results and Discussion -- 4.4 Conclusion -- References -- 5 Investigation on the Discharge Characteristics of Multi-Channel Spark Plasma Jet and Its Triggered Gas Switch -- 5.1 Introduction -- 5.2 Experimental Setup and Theoretical Model -- 5.2.1 Experimental Setup -- 5.2.2 Theoretical Model -- 5.3 Results and Discussion -- 5.4 Conclusions -- References -- 6 A PIC Simulation Method for Ultra-Long-Range Transport of High-Energy Charged Particle Beams -- 6.1 Introduction -- 6.2 Method -- 6.2.1 Initial Conditions for Beam Dynamics Simulation -- 6.2.2 Coordinate System Conversion of Particle Beam and External Electromagnetic Fields -- 6.2.3 Calculation of Self-Space Charge Field in S' System -- 6.2.4 Charged Particle Tracking -- 6.2.5 Results Expressed in Laboratory Coordinate System -- 6.2.6 Scope of Application of the Method -- 6.2.7 Flow Chart -- 6.3 Examples -- 6.4 Conclusion -- References -- 7 Influence of O2 on Thermophysical Properties of C4F7N-CO2 Arc Plasmas -- 7.1 Introduction -- 7.2 Calculation Method -- 7.2.1 Composition and Thermodynamic Properties -- 7.2.2 Transport Coefficients -- 7.3 Results and Discussion -- 7.3.1 Influence of O2 on Compositions of C4F7N-CO2 Arc Plasmas -- 7.3.2 Influence of O2 on Thermodynamic Properties of C4F7N-CO2 Arc Plasmas -- 7.3.3 Influence of O2 on Transport Coefficients of C4F7N-CO2 Arc Plasmas -- 7.4 Conclusion -- References -- 8 The Physicochemical Properties of Pure Water Treated by DBD Reactor Packed with Porous Foam Ceramic -- 8.1 Introduction -- 8.2 Experimental Methods -- 8.2.1 Experimental Setup and Platform -- 8.2.2 Active Substance Detection Methods -- 8.3 Results and Discussion -- 8.3.1 Discharge Characteristics.8.3.2 Characterization of Active Substance Production -- 8.4 Summary -- References -- 9 Determining a Collision Cross-Section Set from Electron Swarm Parameters Using Machine Learning Method -- 9.1 Introduction -- 9.2 Machine Learning Mothed -- 9.2.1 Neural Network Model -- 9.2.2 Preparing Training Data -- 9.2.3 Training Neural Network Model -- 9.3 Result Analysis -- 9.3.1 Prediction of Collision Cross Sections -- 9.3.2 Self-consistency of the Predicted Cross Section -- 9.4 Discussion -- 9.5 Conclusions -- References -- 10 Numerical Simulation of 50 Hz/5 kHz Dual-Frequency Dielectric Barrier Discharge in Atmospheric-Pressure Air -- 10.1 Introduction -- 10.2 Numerical Modeling -- 10.3 Results -- 10.3.1 Characteristic of Voltage and Ampere Under the DF Excitation -- 10.3.2 Discharge Dynamic of the DF Excitation -- 10.3.3 Dielectric Surface Charge of the DF Excitation -- 10.4 Conclusion -- References -- 11 A Design of Flexible Dielectric Barrier Discharge Device -- 11.1 Introduction -- 11.2 Models and Methods -- 11.2.1 Device Structure -- 11.2.2 Simulation Model -- 11.3 Results and Discussion -- 11.3.1 Equivalent Circuit Model -- 11.3.2 COMSOL Electrostatic Field Simulation -- 11.3.3 Parameters Calculation -- 11.4 Experimental Verification -- 11.4.1 Initial Discharge Voltage Verification -- 11.4.2 Discharge Mode Verification -- 11.5 Conclusion -- References -- 12 Generations of Reactive Species Under High-Voltage Nanosecond Pulse Discharge in Gas-Liquid-Solid Three-Phase -- 12.1 Introduction -- 12.2 Devices and Methods -- 12.2.1 Experimental Device -- 12.2.2 Experimental Methods -- 12.2.3 Method of Regulating Solution Conductivity -- 12.2.4 Energy Efficiency Ratio Evaluation -- 12.2.5 Mechanism of Active Ingredient Generation -- 12.3 Experimental Results and Analysis -- 12.3.1 Active Ingredients and Water Content.12.3.2 Energy Efficiency Ratio and Water Content -- 12.3.3 Active Ingredients and Conductivity -- 12.3.4 Energy Efficiency Ratio and Conductivity -- 12.4 Conclusion -- References -- Part II Plasma Assisted Processing -- 13 An Experimental Study on the Characteristics of Gliding Arc Discharge in CO2 Dissociation with an Inlet Laval Nozzle -- 13.1 Introduction -- 13.2 Experimental Setup -- 13.3 Results and Discussion -- 13.3.1 Electrical Characteristics -- 13.3.2 Optical Characteristics -- 13.3.3 Thermal Characteristics -- 13.4 Conclusion -- References -- 14 Novel Plasma Discharge Structure Driven Hydrogenation of CO2 at Room Temperatures and Atmospheric Pressure -- 14.1 Introduction -- 14.2 Experiment -- 14.2.1 Introduction of Experimental Equipment -- 14.2.2 Catalyst Preparation -- 14.2.3 Definition of Parameters -- 14.3 Results and Discussion -- 14.3.1 Effect of Voltage -- 14.3.2 Effect of CO2/H2 Molar Ratio -- 14.3.3 Effect of Flow Rate -- 14.4 Conclusion -- References -- 15 Non-thermal Plasma Approach for Methane Partial Oxidation to Syngas and Value-Added Oxygenates Under Ambient Conditions -- 15.1 Introduction -- 15.2 Experimental Setup -- 15.3 Results and Discussion -- 15.3.1 Discharge Characteristics -- 15.3.2 Plasma Driven Partial Oxidation of Methane -- 15.3.3 Distribution of Liquid Productions -- 15.4 Conclusion -- References -- 16 CH4 Reforming with CO2 in a Segmented Packed-Bed Dielectric Barrier Discharge Reactor -- 16.1 Introduction -- 16.2 Experimental -- 16.2.1 Experimental Setup -- 16.2.2 Analysis Methods -- 16.3 Results and Discussion -- 16.3.1 Effect of Packing Configurations on the Electrical Characteristics -- 16.3.2 Effect of Packing Configurations on Reaction Performance -- 16.4 Conclusion -- References -- 17 Effect of Gliding Arc Plasma Reforming of Methane on Large-Bore Low-Speed Two-Stroke Marine Engine -- 17.1 Introduction.17.2 Experimental and Numerical Methods -- 17.2.1 Plasma Reforming System -- 17.2.2 Product Analysis Methods -- 17.2.3 Numerical Model of the Engine -- 17.3 Results and Discussion -- 17.3.1 Gliding Arc Plasma Reforming -- 17.3.2 Effect of Reforming Products on Engine -- 17.4 Conclusion -- References -- 18 Plasma-Enabled Liquefaction of Cellulose and Lignin as Lignocellulosic Biomass Model Compounds -- 18.1 Introduction -- 18.2 Experimental -- 18.2.1 Materials -- 18.2.2 Experimental Setup and Processes -- 18.2.3 Material Characterizations -- 18.3 Results and Discussion -- 18.3.1 Liquefaction Yield -- 18.3.2 Elemental Analysis -- 18.3.3 FTIR Analysis -- 18.3.4 TG/DTG Analysis -- 18.3.5 GC-MS Analysis -- 18.4 Conclusions -- References -- 19 Research on the Electrical and Hydrophobicity Properties of BN/RTV Composite Materials by Plasma Treatment -- 19.1 Introduction -- 19.2 Materials and Methods -- 19.2.1 Experimental Materials and Setup -- 19.2.2 Sample Preparation Process -- 19.3 Results and Discussion -- 19.3.1 Surface Potential Attenuation Test -- 19.3.2 Flashover Voltage -- 19.3.3 Pollution Flashover Voltage -- 19.3.4 Water Contact Angle Measurements -- 19.4 Conclusion -- References -- 20 Preparation and Modification of Mesocarbon Microbeads Materials Using Magnetic Rotating Thermal Plasma Processing -- 20.1 Introduction -- 20.2 MRTP Principle, Development Status, and Technical Advantages -- 20.2.1 Development Status -- 20.2.2 MRTP Working Principle and Advantages -- 20.3 MRTP Plasma Treatment Test System and Its Composition -- 20.3.1 MRTP Plasma Source -- 20.3.2 Supporting Power Supply -- 20.3.3 Vacuum Chamber and Maintenance System -- 20.3.4 Water Supply and Gas Supply -- 20.3.5 Infrared Temperature Measurement -- 20.4 Experimental Study on MCMB Plasma Treatment -- 20.5 Comparative Analysis of MCMB Treated Experiments.20.5.1 Study on the Effect of Plasma on the Microstructure of MCMB.This proceedings book contains selected and expanded contributions presented at the 5th International Symposium on Plasma and Energy Conversion (ISPEC), held in Nanjing, China, on 27–29 October. 2023. These proceedings highlight the latest research findings, technological advances, and innovative ideas in plasma and energy conversion which are critical to addressing the global energy and environmental challenges. Oriented towards the international frontier of carbon emission reduction technologies and China's national strategic goals of carbon peak and carbon neutrality, plasma and related energy conversion has been gaining attention as a promising alternative to thermal-catalysis or electro-catalysis. The proceedings discuss and exchange cutting-edge scientific innovations and technological advances in fields such as the basic process of discharge plasmas, plasma-assisted synthesis of chemicals and fuels, plasma-controlled environmental pollution, plasma-assisted preparation and treatment of catalysts and function materials, plasma-interface interactions, plasma modelling and simulation technology, and high-voltage measurement and instrumentation, which show great industrial potentials in conversion and utilization of greenhouse gases (e.g. CO2 and CH4), nitrogen fixation, plasma deposition and chemical synthesis, environmental clean-up (e.g. gas cleaning and wastewater treatment), as well as the development of the corresponding plasma devices and driving power supplies. This collection of papers presents the main contributions of plasma and energy conversion in the form of separate chapters, including cutting-edge studies on conversion technology, synthesis and treatment technology, complex mechanism simulation and modelling, as well as in-situ detection and diagnosis. These proceedings are suitable for researchers engaged in fields like plasma chemistry, plasma-catalysis, discharge diagnosis and modelling, chemical modelling, and high-voltage applications. .Springer Proceedings in Physics,1867-4941 ;398Plasma (Ionized gases)High temperature plasmasLaser plasmasPlasma PhysicsBasic Plasma Phenomena and Gas DischargesHigh Temperature PlasmaLaser-produced PlasmaPlasma (Ionized gases).High temperature plasmas.Laser plasmas.Plasma Physics.Basic Plasma Phenomena and Gas Discharges.High Temperature Plasma.Laser-produced Plasma.530.44Fang Zhi1765214Zhang Cheng1121135Mei Danhua1765215Zhang Shuai1765216MiAaPQMiAaPQMiAaPQBOOK9910879590003321Proceedings of the 5th International Symposium on Plasma and Energy Conversion4206647UNINA