10783nam 22004573 450 991087899470332120240801080410.09781394220038(electronic bk.)9781394220021(MiAaPQ)EBC31571544(Au-PeEL)EBL31571544(CKB)33517466000041(EXLCZ)993351746600004120240801d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMathematical Modeling of Complex Reaction Systems in the Oil and Gas Industry1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (482 pages)Print version: Ancheyta, Jorge Mathematical Modeling of Complex Reaction Systems in the Oil and Gas Industry Newark : John Wiley & Sons, Incorporated,c2024 9781394220021 Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Modeling the Kinetics of Hydrocracking of Heavy Oil with Mineral Catalyst -- 1.1 Introduction -- 1.1.1 Reserves and Production of Heavy Crude Oils -- 1.1.2 Heavy Crude Oil Upgrading Processes -- 1.1.3 Reactions During Slurry Phase Hydrocracking -- 1.1.4 Catalysts for Hydrocracking of Heavy Crude Oils in Slurry Phase -- 1.2 Kinetic Models -- 1.2.1 General Types of Kinetic Models -- 1.2.1.1 Lumping Kinetic Models -- 1.2.1.2 Continuous Lumping Kinetic Models -- 1.2.1.3 Single-Event. Kinetic Models -- 1.2.2 Kinetic Models Reported in the Literature for Hydrocracking of Heavy Crude Oils Using Dispersed Catalysts -- 1.2.2.1 Kinetic Models Based on Distillation Curves -- 1.2.2.2 Kinetic Models Based on SARA Fractions -- 1.2.3 Kinetic Models Based on Continuous Lumping -- 1.2.4 Thermodynamic Model to Predict the Asphaltenes Flocculation and Sediments Formation -- 1.3 Kinetic Parameters Estimation -- 1.3.1 Assumptions -- 1.3.2 Initialization of Parameters -- 1.3.3 Nonlinear Optimization -- 1.3.4 Objective Function -- 1.3.5 Sensitivity and Statistical Analyses -- 1.3.5.1 Perturbations -- 1.3.5.2 Parity Plots -- 1.3.5.3 Residuals -- 1.3.5.4 AIC and BIC -- 1.4 Results and Discussion -- 1.4.1 Kinetic Parameters -- 1.4.1.1 Assumptions -- 1.4.1.2 Reaction Rate Coefficients -- 1.4.1.3 Activation Energies -- 1.4.2 Accuracy of the Kinetic Models -- 1.4.2.1 SARA-Based. Models -- 1.4.2.2 Distillation Curves-Based Models -- 1.4.3 Reactions in Parallel and in Series -- 1.4.4 Thermodynamic Model -- 1.4.5 General Comments -- 1.5 Conclusion -- References -- Chapter 2 Modeling Catalyst Deactivation of Hydrotreating of Heavy Oils -- 2.1 Introduction -- 2.2 Mechanisms of Deactivation -- 2.2.1 Coking Deposition (Fouling) -- 2.2.2 Metal Deposition (Poisoning).2.3 Deactivation Models -- 2.3.1 Deactivation Models by Coke Deposition -- 2.3.2 Deactivation Models by Metal Deposition -- 2.3.3 Deactivation Models by Coke and Metal Deposition -- 2.4 Development of Models for HDT Catalyst Deactivation -- 2.4.1 Important Issues -- 2.4.2 Final Remarks -- 2.5 Development of a Reactor Model for Heavy Oil Hydrotreating with Catalyst Deactivation Based on Vanadium and Coke Deposition -- 2.5.1 The Model -- 2.5.1.1 Description -- 2.5.1.2 Solution of the Model -- 2.5.1.3 Advantages of the Model -- 2.5.1.4 Procedure for Parameter Estimation -- 2.5.2 Results and Discussion -- 2.5.2.1 Profiles of Sulfur and Vanadium Concentration in Products -- 2.5.2.2 Comparison of Predictions with Literature and Proposed Model -- 2.5.2.3 Profiles of Coke and Vanadium on Catalyst -- 2.5.2.4 Final Remarks -- 2.5.3 Usefulness of the Model -- 2.5.4 Conclusion -- 2.6 Application of the Deactivation Model for Hydrotreating of.Heavy Crude Oil in Bench-Scale Reactor -- 2.6.1 Properties of Heavy Oil -- 2.6.2 Properties of the Catalyst -- 2.6.3 Bench-Scale Reactor -- 2.6.4 Catalyst Activation -- 2.6.5 Operating Conditions -- 2.6.6 Characterization Methods -- 2.6.7 Parameter Estimation -- 2.6.8 Results and Discussion -- 2.6.8.1 Evolution of Sulfur and Metals Concentration in Products -- 2.6.8.2 Coke and Metals on Catalyst -- 2.6.9 Conclusion -- Nomenclature -- References -- Chapter 3 Simulation of the Oxidative Regeneration of Coked Catalysts: Kinetics, Catalyst Pellet, and Bed Levels -- 3.1 Introduction -- 3.2 Process Chemistry and Laboratory Experiments -- 3.2.1 Catalyst and Proposed Reactions -- 3.2.2 Reaction Kinetics -- 3.2.3 Experimental Setup -- 3.2.4 Experiments -- 3.3 Mathematical Model -- 3.4 Model Solution Method -- 3.5 Modeling Results -- 3.6 Conclusion -- 3.7 Notation -- Abbreviations -- Acknowledgment -- References.Chapter 4 Modeling of Unsteady-State Catalytic and Adsorption-Catalytic Processes: Novel Reactor Designs -- 4.1 Introduction -- 4.2 Novel Reactor Designs for Catalytic Reverse-Flow and Adsorption-Catalytic Processes -- 4.2.1 Unsteady-State Catalytic Reverse-Flow Process -- 4.2.2 Adsorption-Catalytic Process -- 4.3 Mathematical Models of the Processes -- 4.3.1 Unsteady-State Catalytic Reverse-Flow Process -- 4.3.2 Adsorption-Catalytic Process -- 4.4 Results -- 4.4.1 Unsteady-State Catalytic Reverse-Flow Process -- 4.4.2 Adsorption-Catalytic Process -- 4.4.2.1 Reactor with Truncated Cone Entrance -- 4.4.2.2 Multisectional Reactor -- 4.5 Conclusion -- 4.6 Notation -- Abbreviations -- Acknowledgments -- References -- Chapter 5 Molecular Reconstruction of Complex Hydrocarbon Mixtures for Modeling of Heavy Oil Processing -- 5.1 Introduction -- 5.2 The Problem -- 5.3 Illustration -- 5.4 Reconstruction by Entropy Maximization (REM) -- 5.5 Stochastic Reconstruction (SR) -- 5.6 SR-EM -- 5.7 Structure-Oriented. Lumping (SOL) Method -- 5.8 State Space Representation Method -- 5.9 Molecular Type-Homologous Series Matrix -- 5.10 Conclusion -- Acknowledgment -- References -- Chapter 6 Modeling of Catalytic Hydrotreating Reactor for Production of Green Diesel -- 6.1 Introduction -- 6.2 Conversion of Vegetable Oils into Renewable Fuels -- 6.2.1 Commercial Production of Renewable Diesel -- 6.3 Hydrotreating Kinetic Models and Reaction Pathways -- 6.3.1 Model Compounds -- 6.3.2 Vegetable Oils -- 6.4 Models for Catalytic Deactivation -- 6.5 Reactor Modeling for Vegetable Oil Hydrotreating -- 6.5.1 Deviation from Ideal Flow Pattern -- 6.6 The Importance of Modelling Reactors for Vegetable Oil Hydrotreating -- 6.7 Study Case for the Development of Dynamic Reactor Model -- 6.7.1 .Equations.and Assumptions for Hydrotreating Reactor Modeling.6.7.2 Kinetic Model for Hydrotreating of Vegetable Oil -- 6.7.3 Hydrogen Consumption and Gas Generation -- 6.7.4 Solution of Reactor Models -- 6.8 Analysis and Discussion of Results -- 6.8.1 Criteria to Ensure Ideal Behaviors in Trickle-Bed Reactor -- 6.8.2 Dynamic Profiles of Feedstock and Products of a Bench-Scale Reactor for.Catalytic Hydrotreating of Vegetable Oil -- 6.8.3 Validation of Hydrotreating Reactor Model with Pilot Plant Data -- 6.8.4 Dynamic Simulation of a Non-isothermal Reactor -- 6.8.4.1 Comparison of Non-isothermal Model with Experimental Results in Isothermal Reactor -- 6.8.4.2 Comparison of Bench-Scale and Pilot-Scale. Reactor Under Non-isothermal Operating.Condition -- 6.8.5 Dynamic Simulation of an Adiabatic Commercial Reactor -- 6.8.5.1 Configuration of Hydrogen Quenching -- 6.8.5.2 Liquid-Phase. Yields and Gas Composition -- 6.9 Conclusions -- References -- Chapter 7 Modeling of Slurry-Phase Hydrocracking Reactor -- 7.1 Introduction -- 7.1.1 Characteristics of Slurry-Phase Reactors for Hydrocracking -- 7.1.1.1 Type of Reactors -- 7.1.1.2 Catalyst Properties -- 7.1.2 SPR Modeling -- 7.1.2.1 Classification -- 7.1.2.2 Model Complexity -- 7.1.2.3 Models for Slurry Reactors -- 7.2 Proposed Generalized Model -- 7.2.1 .Equations for the Generalized Model -- 7.2.2 Solids Concentration -- 7.2.3 Initial and Boundary Conditions -- 7.2.4 Estimation of Model Parameters -- 7.2.5 Gas Holdup -- 7.2.6 Gas-Liquid Mass Transfer Coefficients -- 7.2.7 Gas-Liquid. Equilibrium -- 7.2.8 Liquid-Solid and Gas-Solid Mass Transfer Coefficients -- 7.2.9 Dispersion Coefficients -- 7.2.10 Heat Transfer Coefficients -- 7.2.11 Example of Simplification of the Generalized Model -- 7.3 Simplified Models -- 7.3.1 SPR 1D Model -- 7.3.2 SPR 2D Model -- 7.3.3 Continous Stirred Tank Reactor Model -- 7.3.4 Parameters -- 7.3.5 Reaction Kinetics.7.3.6 Solution Method -- 7.4 Numerical Simulations -- 7.4.1 Experimental Reactors -- 7.4.1.1 Dynamic Simulations of CSTR and SPR -- 7.4.1.2 Steady-State Simulations of a SPR -- 7.4.2 Industrial-Scale Reactor -- 7.4.2.1 Dynamic Simulations of the Industrial Slurry-Phase Reactor -- 7.4.2.2 Sensitivity Analysis for the Industrial Slurry-Phase Reactor -- 7.5 Conclusions -- Nomenclature -- References -- Chapter 8 Modeling of Fischer-Tropsch Synthesis Reactor -- 8.1 Fundamentals of the Fischer-Tropsch Synthesis to Produce Clean Fuels -- 8.1.1 Fischer-Tropsch Synthesis Technology -- 8.1.2 Fischer-Tropsch Synthesis Catalysts -- 8.1.2.1 Cobalt-Based Catalysts -- 8.1.2.2 Iron-Based Catalysts -- 8.1.2.3 Catalyst Support -- 8.1.3 Fischer-Tropsch Synthesis Kinetic Models -- 8.1.3.1 Kinetic Models Developed with Iron Catalyst -- 8.1.3.2 Kinetic Models Developed with Cobalt Catalyst -- 8.1.4 General Aspects of Fischer-Tropsch Catalytic Mechanisms -- 8.1.5 The Fischer-Tropsch Synthesis Product Distribution Models -- 8.1.6 Final Remarks -- 8.2 Modeling of Catalytic Fixed-Bed Reactors for Fuels Production by Fischer-Tropsch Synthesis -- 8.2.1 Introduction -- 8.2.2 Modeling of Fixed-Bed Fischer-Tropsch Reactors -- 8.2.2.1 Classification of Fixed-Bed Fischer-Tropsch Reactor Models -- 8.2.2.2 One- and Two-Dimensional Pseudohomogeneous Model -- 8.2.2.3 One- and Two-Dimensional Heterogeneous Model -- 8.2.3 Development of a Generalized Fixed-Bed Fischer-Tropsch Reactor Model -- 8.2.3.1 General Equations.of the Model -- 8.2.3.2 Boundary Conditions of the Proposed Generalized Model -- 8.2.3.3 Pressure Drop -- 8.2.4 Model Parameters -- 8.2.4.1 Mass Transfer Parameters -- 8.2.4.2 Heat Transfer Parameters -- 8.2.4.3 Phase Equilibrium -- 8.2.4.4 Catalyst Particles Parameters -- 8.2.4.5 Catalytic Bed Parameters -- 8.2.5 Final Remarks.8.3 Importance of Proper Hydrodynamics Modeling in Fixed-Bed Fischer-Tropsch Synthesis Reactor.541.39015118Ancheyta Jorge915445Zagoruiko Andrey1764911Elyshev Andrey1764912MiAaPQMiAaPQMiAaPQ9910878994703321Mathematical Modeling of Complex Reaction Systems in the Oil and Gas Industry4206114UNINA