07620nam 22005173 450 991087798960332120240412080246.09781394284405139428440397813942843821394284381(MiAaPQ)EBC31267471(Au-PeEL)EBL31267471(CKB)31405600600041(Exl-AI)31267471(EXLCZ)993140560060004120240412d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierGround Penetrating Radar From Theoretical Endeavors to Computational Electromagnetics, Signal Processing, Antenna Design and Field Applications1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (302 pages)9781789451573 1789451574 Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Electromagnetic Imaging of GPR Data: Theory and Experiments -- 1.1. Inverse scattering problem: mathematical formulation -- 1.2. Inverse scattering problem in case of planarly-layered media -- 1.3. Solution strategies -- 1.4. Qualitative methods -- 1.4.1. Linear Sampling Method -- 1.4.2. Orthogonality sampling method -- 1.4.3. Shape reconstruction via joint sparsity based inverse source and equivalence principles -- 1.4.4. Applicability and limitations of the three methods -- 1.5. Linearized methods -- 1.5.1. Born approximation -- 1.5.2. Distorted Born approximation -- 1.5.3. A linear approach for quantitative subsurface imaging based on VE -- 1.6. Regularization strategies -- 1.7. An example of multistatic tomographic imaging for GPR prospecting: the Gergia Tech case -- 1.7.1. Landmines data set -- 1.7.2. Buried pipe -- 1.8. References -- Chapter 2. Nonlinear and Hybrid Inversion Techniques for Ground Penetrating Radar Imaging -- 2.1. GPR imaging as a nonlinear inverse problem -- 2.2. Quantitative inversion -- 2.3. Hybrid techniques -- 2.4. Example of application in a simulated scenario -- 2.5. References -- Chapter 3. Sensor Deployment in Subsurface GPR Imaging -- 3.1. Introduction -- 3.2. Linearized scattering model -- 3.3. Inversion -- 3.3.1. Migration -- 3.3.2. A simple pedagogical example -- 3.3.3. The case of unbounded observation domain -- 3.4. Sensor deployment strategy -- 3.4.1. Warping method -- 3.5. References -- Chapter 4. Ground Penetrating Radar Tomography for Cultural Heritage -- 4.1. Introduction -- 4.2. GPRT general concepts -- 4.3. GPRT performance assessment -- 4.4. Effective implementation of GPRT -- 4.5. GPRT surveys in cultural heritage -- 4.5.1. Discovery of a small temple - archeological park of Paestum and Velia.4.5.2. On the traces of Sir Arthur Evans restorations - Knossos Palace -- 4.5.3. Surveys of columns - tombs of the Kings, Paphos, Cyprus -- 4.6. Future perspectives: UAV-based GPRT -- 4.7. References -- Chapter 5. The Full-Wave Radar Equation for Wave Propagation in Multilayered Media and Its Applications -- 5.1. Introduction -- 5.2. Far-field radar equation -- 5.3. Determination of the radar-antenna characteristic functions -- 5.4. Planar multilayered media Green's function -- 5.5. Near-field radar equation -- 5.6. Full-wave inversion -- 5.7. Soil moisture mapping application -- 5.7.1. Test sites -- 5.7.2. Radar system -- 5.7.3. Radar calibration -- 5.7.4. Radar images -- 5.7.5. Inversion focused on the surface reflection -- 5.7.6. Conclusions and perspectives -- 5.8. Radar-based interaction -- 5.8.1. Processing pipeline -- 5.8.2. Radar system -- 5.8.3. Results -- 5.8.4. Breathing pattern recognition -- 5.9. Conclusion and perspectives -- 5.10. References -- Chapter 6. Assessment of Flexible Pavements by GPR: 20 Years of R&amp -- D in France -- 6.1. Context -- 6.2. GPR systems and acquisition -- 6.3. GPR processing and interpretation -- 6.4. Complementary ND techniques -- 6.4.1. Coring -- 6.4.2. Surface conditions -- 6.4.3. Deflection -- 6.4.4. Other mechanical NDT methods -- 6.4.5. Gammadensimetry -- 6.5. Research and innovations -- 6.5.1. High-frequency stepped-frequency radar approach -- 6.5.2. Super/high time resolution processing -- 6.5.3. Full waveform inversion processing -- 6.5.4. Machine learning processing -- 6.5.5. New orientations -- 6.6. Conclusion -- 6.7. Acknowledgements -- 6.8. References -- Chapter 7. GPR for Tree Roots Reconstruction under Heterogeneous Soil Conditions -- 7.1. Introduction -- 7.2. Materials, definitions and methods -- 7.2.1. Root description and modeling -- 7.2.2. Dielectric models for heterogeneous soil.7.2.3. Forward electromagnetic simulation -- 7.2.4. Laboratory experiments -- 7.3. Data-processing framework -- 7.3.1. Background removal -- 7.3.2. Soil dielectric permittivity estimation -- 7.3.3. Matched filter technique -- 7.4. Results -- 7.4.1. Results of simulation -- 7.4.2. Experimental results -- 7.5. Discussion -- 7.5.1. Computational times of the processing framework -- 7.5.2. Potentialities of the proposed method -- 7.5.3. Limitations of the proposed method -- 7.5.4. Applicability of the proposed framework to field measurements -- 7.6. Conclusion -- 7.7. References -- Chapter 8. Sounding Radars and Ground Penetrating Radars Designed for the Exploration of Our Solar System - Focus on Planet Mars -- 8.1. Introduction -- 8.2. Overview of the radars designed for planetary missions -- 8.3. Specific constraints on the radar design due to space missions -- 8.3.1. Building the instrument -- 8.3.2. Accommodating the sounding radar on the mission's platform -- 8.3.3. Some specific difficulties on data interpretation -- 8.4. Focus on Mars -- 8.4.1. A very short summary of the exploration of planet Mars -- 8.4.2. Description of the Martian subsurface radars with a few results -- 8.5. Unusual radar designed -- 8.5.1. The tomographic radar CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) of the ROSETTA mission -- 8.5.2. The LRPR on board the lander of the CHANG'E 5 lunar mission -- 8.6. Future of soundings radars and GPR in solar system exploration -- 8.7. References -- List of Authors -- Index -- EULA.This book offers an in-depth exploration of Ground Penetrating Radar (GPR) technology, covering theoretical foundations, computational signal processing, antenna design, and field applications. It serves as a comprehensive guide for understanding the inverse scattering problems associated with GPR, discussing both qualitative and quantitative methods for data imaging and analysis. The work is intended for professionals and researchers in the fields of engineering and geosciences, aiming to enhance the practical deployment of GPR in various applications such as subsurface imaging and cultural heritage preservation. Through contributions from multiple experts, the book also addresses advanced topics like nonlinear inversion techniques and sensor deployment strategies, providing valuable insights for the development of more effective GPR systems.Generated by AI.Ground penetrating radarGenerated by AISignal processingGenerated by AIGround penetrating radarSignal processingSerhir Mohammed1751170Lesselier Dominique1731480MiAaPQMiAaPQMiAaPQBOOK9910877989603321Ground Penetrating Radar4186026UNINA