05459nam 22006734a 450 991087776870332120200520144314.01-280-27538-397866102753800-470-24511-50-471-70517-90-471-70516-0(CKB)1000000000355716(EBL)227548(OCoLC)173031545(SSID)ssj0000198581(PQKBManifestationID)11187605(PQKBTitleCode)TC0000198581(PQKBWorkID)10183506(PQKB)10156193(MiAaPQ)EBC227548(EXLCZ)99100000000035571620040527d2005 uy 0engur|n|---|||||txtccrMass spectrometry in biophysics conformation and dynamics of biomolecules /Igor A. Kaltashov, Stephen J. EylesHoboken, N.J. John Wiley20051 online resource (480 p.)Wiley-Interscience series on mass spectrometryDescription based upon print version of record.0-471-45602-0 Includes bibliographical references and index.MASS SPECTROMETRY IN BIOPHYSICS; CONTENTS; Preface; 1 General Overview of Basic Concepts in Molecular Biophysics; 1.1. Covalent Structure of Biopolymers; 1.2. Noncovalent Interactions and Higher-order Structure; 1.2.1. Electrostatic Interaction; 1.2.2. Hydrogen Bonding; 1.2.3. Steric Clashes and Allowed Conformations of the Peptide Backbone: Secondary Structure; 1.2.4. Solvent-Solute Interactions, Hydrophobic Effect, Side Chain Packing, and Tertiary Structure; 1.2.5. Intermolecular Interactions and Association: Quaternary Structure; 1.3. The Protein Folding Problem1.3.1. What Is Protein Folding?1.3.2. Why Is Protein Folding So Important; 1.3.3. What Is the Natively Folded Protein and How Do We Define a Protein Conformation?; 1.3.4. What Are Non-native Protein Conformations? Random Coils, Molten Globules, and Folding Intermediates; 1.3.5. Protein Folding Pathways; 1.4. Protein Energy Landscapes and the Folding Problem; 1.4.1. Protein Conformational Ensembles and Energy Landscapes: Enthalpic and Entropic Considerations; 1.4.2. Equilibrium and Kinetic Intermediates on the Energy Landscape; 1.5. Protein Dynamics and Function1.5.1. Limitations of the Structure-Function Paradigm1.5.2. Protein Dynamics Under Native Conditions; 1.5.3. Biomolecular Dynamics and Binding from the Energy Landscape Perspective; 1.5.4. Energy Landscapes Within a Broader Context of Nonlinear Dynamics: Information Flow and Fitness Landscapes; References; 2 Overview of "Traditional" Experimental Arsenal to Study Biomolecular Structure and Dynamics; 2.1. X-Ray Crystallography; 2.1.1. Fundamentals; 2.1.2. Crystal Structures at Atomic and Ultrahigh Resolution; 2.1.3. Crystal Structures of Membrane Proteins2.1.4. Protein Dynamics and X-Ray Diffraction2.2. Solution Scattering Techniques; 2.2.1. Static and Dynamic Light Scattering; 2.2.2. Small-Angle X-Ray Scattering; 2.2.3. Cryo-Electron Microscopy; 2.2.4. Neutron Scattering; 2.3. NMR Spectroscopy; 2.3.1. Heteronuclear NMR; 2.3.2. Hydrogen Exchange by NMR; 2.4. Other Spectroscopic Techniques; 2.4.1. Cumulative Measurements of Higher Order Structure: Circular Dichroism; 2.4.2. Vibrational Spectroscopy; 2.4.3. Fluorescence: Monitoring Specific Dynamic Events; 2.5. Other Biophysical Methods to Study Macromolecular Interactions and Dynamics2.5.1. Calorimetric Methods2.5.2. Analytical Ultracentrifugation; 2.5.3. Surface Plasmon Resonance; 2.5.4. Gel Filtration; 2.5.5. Gel Electrophoresis; References; 3 Overview of Biological Mass Spectrometry; 3.1. Basic Principles of Mass Spectrometry; 3.1.1. Stable Isotopes and Isotopic Distributions; 3.1.2. Macromolecular Mass: Terms and Definitions; 3.2. Methods of Producing Biomolecular Ions; 3.2.1. Macromolecular Ion Desorption Techniques: General Considerations; 3.2.2. Electrospray Ionization; 3.2.3. Matrix Assisted Laser Desorption/Ionization; 3.3. Mass Analysis3.3.1. General Considerations: m/z Range and Mass Discrimination, Mass Resolution, Duty Cycle, Data Acquisition RateThe first systematic summary of biophysical mass spectrometry techniquesRecent advances in mass spectrometry (MS) have pushed the frontiers of analytical chemistry into the biophysical laboratory. As a result, the biophysical community's acceptance of MS-based methods, used to study protein higher-order structure and dynamics, has accelerated the expansion of biophysical MS.Despite this growing trend, until now no single text has presented the full array of MS-based experimental techniques and strategies for biophysics. Mass Spectrometry in Biophysics expertly closes this gap iWiley-Interscience series on mass spectrometry.Mass spectrometryBiophysicsBiomoleculesSpectraMass spectrometry.Biophysics.BiomoleculesSpectra.572/.33Kaltashov Igor A873998Eyles Stephen J1752593MiAaPQMiAaPQMiAaPQBOOK9910877768703321Mass spectrometry in biophysics4187922UNINA