10580nam 22004573 450 991087749630332120240502080232.01-394-26171-31-394-26172-1(MiAaPQ)EBC31309747(Au-PeEL)EBL31309747(CKB)31798099600041(EXLCZ)993179809960004120240502d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSmart Grids As Cyber Physical Systems, 2 Volume Set1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (772 pages)1-394-26169-1 Cover -- Volume 1 -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Grid Independent Dynamic Charging of EV Batteries Using Solar Energy -- 1.1 Introduction -- 1.2 Proposed Methodology -- 1.3 Design of Boost Converter -- 1.4 Perturb and Observe Algorithm for Tracking Maximum Power -- 1.5 Charge Controller -- 1.6 Conclusion -- References -- Chapter 2 RS-11-I Design and Control of Solar-Battery-Based Microgrid System -- 2.1 Introduction -- 2.2 Solar Battery System Modelling -- 2.2.1 Reduced Switch 11-Level Inverter (RS-11-I) -- 2.3 Reduced PLL-Based Control Modelling -- 2.3.1 DC-Link Voltage Regulation -- 2.3.2 RS-11-I Control Application -- 2.4 Result Analysis -- 2.5 Conclusion -- Acknowledgment -- Funding Statement -- References -- Chapter 3 A Novel Concept of Hybrid Storage Integrated Smart Grid System with Integrated SoC Management Scheme -- 3.1 Introduction -- 3.2 Proposed Droop SoC- and State of Power (SOP)-Based Management Method -- 3.2.1 Basic Operation Mode of DESS -- 3.2.2 ESUS Model -- 3.2.3 Basic Model of SoC Management Control System -- 3.2.4 Proposed SoC Management Scheme and the Undertaken System -- 3.3 Result Analysis -- 3.3.1 Charging Case -- 3.3.2 Discharging Case -- 3.4 Conclusion -- References -- Chapter 4 Parameters Sensitivity of Solar Photovoltaic Array Architectures under Incremental Row and Column Shading -- 4.1 Introduction -- 4.2 System Modelling and Description -- 4.3 Electrical Parameters Estimation -- 4.4 Sensitivity Analysis of Electrical Parameters of PV Array Under Incremental Partial Shading -- 4.4.1 Analysis under Incremental Row Shading Scenario -- 4.4.2 Analysis under Incremental Column Shading Scenario -- 4.5 Conclusion -- References -- Chapter 5 Controlled Smart Robotic Arm for Optimized Movement in Pharma Application -- 5.1 Introduction -- 5.2 Description of the Prototype.5.3 Segments of the Prototype -- 5.3.1 Designing the Circuit of the Prototype -- 5.3.2 Designing the Mobile App for User Interface -- 5.4 Design Specifications -- 5.5 Simulation Analysis -- 5.6 Hardware Analysis -- 5.7 Conclusion -- References -- Chapter 6 An Exploration of Internet of Everything in Smart Universe -- 6.1 Introduction -- 6.2 Related Work -- 6.2.1 Smart Infrastructure -- 6.2.2 Smart Building -- 6.2.3 Smart Healthcare -- 6.2.4 IoE in Healthcare Networks -- 6.2.5 IoE Healthcare Services -- 6.2.6 IoE Healthcare Security -- 6.2.7 IoE in Smart Countries -- 6.2.8 Smart Agriculture -- 6.2.9 Smart Grid -- 6.2.10 Industrial IoT -- 6.2.11 IoT in Education -- 6.2.12 Use Cases -- 6.2.12.1 Smart Classrooms -- 6.2.12.2 Smart Books -- 6.2.12.3 Augmented and Virtual Reality in Education -- 6.2.12.4 Smart Campus -- 6.2.12.5 Assisted Learning for the Disabled -- 6.2.12.6 Distance Learning -- 6.2.12.7 Advantages of IoT in Education -- 6.2.12.8 Disadvantages of IoT in Education -- 6.2.13 IoT in Waste Management -- 6.2.14 Route Optimization -- 6.2.15 No Deliveries were Missed -- 6.2.16 Recycling in an Effective and Efficient Way -- 6.2.17 IoT Management Systems that are Automated -- 6.2.18 Analyzing Data Quickly -- 6.2.19 IoT in Water Management -- 6.2.20 Use Cases -- 6.2.20.1 Water Management in Group Residential Areas -- 6.2.20.2 Water Management in Campuses -- 6.2.20.3 Water Management in Industries -- 6.2.20.4 Water Management in Irrigation -- 6.2.20.5 Water Management for Underground Water Source -- 6.2.20.6 Advantages of IoT in Water Management -- 6.2.20.7 Disadvantages of IoT in Water Management -- 6.2.21 IoT in the Food Industry -- 6.2.21.1 Accessibility to Customers -- 6.2.21.2 Quality Food Assurance -- 6.2.21.3 Improving Food Safety -- 6.2.22 Transparent Supply Chain Management -- 6.2.22.1 Recall of Goods -- 6.2.22.2 Energy Conservation.6.2.22.3 Effective Inventory Control -- 6.2.22.4 Forged Product Identification -- 6.2.22.5 Logistics that are More Efficient -- 6.2.22.6 Operational Efficiency -- 6.2.23 IoT in the Banking Sector -- 6.2.24 Use Cases -- 6.2.24.1 Debt Collection -- 6.2.24.2 Heist Prevention -- 6.2.24.3 Fraud Detection -- 6.2.24.4 Emergence of FinTech -- 6.2.24.5 Employee Training -- 6.2.24.6 Advantages of IoT in Banking -- 6.2.24.7 Disadvantages of IoT in Banking -- 6.2.25 IoT in Government Sectors -- 6.2.26 Use Cases -- 6.2.26.1 Public Healthcare -- 6.2.26.2 Public Transportation -- 6.2.26.3 Disaster Management -- 6.2.26.4 Public Safety -- 6.2.26.5 Advantages of IoT in Government Sectors -- 6.2.26.6 Disadvantages of IoT in Government Sectors -- 6.2.27 IoT in Underwater Vehicle -- 6.2.28 IoT in Criminology and Emergency Management -- 6.2.28.1 Cyber Crime Attacks -- 6.2.28.2 Crime Harvests and the IoT -- 6.2.28.3 Digital Device Forensics -- 6.2.28.4 The Need for IoT Forensics -- 6.2.28.5 Evidence Identification, Collection,and Preservation -- 6.2.28.6 Evidence Analysis and Correlation -- 6.2.28.7 Opportunities of IoT Forensics -- 6.3 Conclusion -- References -- Chapter 7 An Intelligent Smart Grid Switching System for an Efficient Load Balancing Through Machine Learning Models -- 7.1 Introduction -- 7.2 Backbone of Work -- 7.3 Theory Behind Smart Grids and Integration in the Field -- 7.4 Phases of Data Through the Smart Grids -- 7.4.1 Data Cleaning -- 7.4.2 Data Transformation -- 7.4.3 Data Reduction -- 7.5 Flowchart of the Proposed Smart Grid System -- 7.6 Work Done -- 7.7 Working with Dataset-Dataset Description -- 7.8 Tools Used for Implementing the Proposed Algorithm -- 7.9 Results -- 7.10 Inference of the Solution -- 7.11 Conclusion and Future Work -- References -- Chapter 8 Hybrid Energy Storage System for Battery-Powered Electric Vehicles -- 8.1 Introduction.8.2 Need of Electric Vehicle -- 8.2.1 Overview of Single Phase Induction Motor -- 8.2.2 Objectives -- 8.3 Methodology -- 8.4 Simulation Results and Discussion -- 8.5 Conclusion -- References -- Chapter 9 FPGA-Based Smart Building Access Control -- 9.1 Introduction -- 9.2 Methodology -- 9.3 FSM Sequence Detector -- 9.4 UART Transmitter -- 9.5 Results -- 9.6 Conclusion -- References -- Chapter 10 Artificial Hyperintelligence-Enabled Cyber-Physical System Control for Autonomous Vehicles -- 10.1 Introduction -- 10.2 Analytical Framework -- 10.2.1 Literature Review -- 10.3 Layer Architecture of Cyber-Physical Intelligent Systems (CPIS) -- 10.3.1 Layer Approach of Autonomous Vehicle Control -- 10.3.2 End-to-End Security Parameters -- 10.4 Cyber-Physical Autonomous Vehicle vs. Machine Learning Systems -- 10.4.1 New Entry Authentication Procedure -- 10.4.2 Autonomous Vehicles Basic Requirements -- 10.4.3 Global Positioning System (GPS) -- 10.4.4 Short-Range Communication Transceiver -- 10.4.5 Cameras -- 10.4.6 Ultrasonic Sensor -- 10.4.7 Light Detection and Ranging (LIDAR) -- 10.4.8 Radar Sensor -- 10.4.9 Server Controller -- 10.4.10 Protocol Specification -- 10.4.11 Imperial Cohort Reply Procedure for Optimal Channel Selection -- 10.5 Results and Discussion -- 10.5.1 Handover Rate of Failure vs. Vehicles Count -- 10.5.2 Packet Delivery Rate (PDR) vs. Vehicle Count -- 10.6 Conclusion -- References -- Chapter 11 FPGA-Based Smart Delivery Bot -- 11.1 Introduction -- 11.2 Methodology -- 11.3 Test Graph -- 11.4 Results and Discussion -- References -- Chapter 12 Cabin Cooling System for Heavy Commercial Load Vehicle -- 12.1 Introduction -- 12.2 Literature Survey -- 12.2.1 Beginning With the Principal Warmer or A/C -- 12.2.2 Additional Protection -- 12.2.3 Utilizing Genuine Profound Cycle Batteries -- 12.2.4 Roof-Mounted Air-Conditioning System RTX 1000.12.2.5 Roof-Mounted Air-Conditioning System RTX 2000 -- 12.2.6 Cooltronic G2.5 Auxiliary Air-Conditioning System -- 12.3 Working Principle of Peltier Cooler -- 12.3.1 Elements of Peltier Cooler -- 12.3.2 Heat Absorption -- 12.3.3 Thermal Insulation -- 12.4 Proposed Idea -- 12.5 Design Specifications -- 12.6 Prototyping -- 12.7 Advantages of Proposed Idea -- 12.8 Conclusion -- References -- Chapter 13 Renewable Energy and Its Dynamic Value -- 13.1 Introduction -- 13.2 Is a Wetter Grid a Greener Grid? Estimating Emigration Equipoises for Wind and Solar Power in the Presence of Larger Hydroelectric Power -- 13.2.1 Data -- 13.3 Wind, Solar, and Hydropower Trends in CAISO -- 13.3.1 Power Generation Trends -- 13.4 Identification -- 13.5 Electricity Storehouse, Emissions Levies, and Value of Renewable Energy -- 13.5.1 Introduction -- 13.5.2 Literature Review -- 13.5.3 Emissions Functions -- 13.5.4 Wind Power and Storage Parameters -- 13.5.5 Policy Scenarios and Monte Carlo Simulations -- 13.5.6 Welfare and Allocations -- 13.5.7 Emissions Offsets -- 13.5.8 Accounting for Regulating Reserves Costs -- 13.6 Conclusion -- References -- Chapter 14 Energy Resources and Reliability Assessments -- 14.1 Motivation -- 14.1.1 Objections -- 14.2 Photovoltaic (PV) Systems -- 14.2.1 Attributes of PV System -- 14.2.2 Grid Level PV Farm Structure -- 14.2.2.1 Output Power of PV Systems -- 14.2.2.2 Attributes of PV System Components -- 14.2.3 Reliability Modelling of Major Photovoltaic System Components' Reliability -- 14.2.3.1 Power Electronic Circuit Components -- 14.2.3.2 Reliability of PV Panels -- 14.3 Reliability Modelling of PV System -- 14.4 Case Studies -- 14.5 Conclusion -- 14.6 Future Works -- References -- Chapter 15 Electric Vehicle Charging Stations Effect on Battery Storage Technology -- 15.1 Introduction -- 15.1.1 Background -- 15.1.2 Problem Statement.15.1.3 Research Objectives.Swathika O. V. Gnana1756123Karthikeyan K1756124Sanjeevikumar P1753124MiAaPQMiAaPQMiAaPQBOOK9910877496303321Smart Grids As Cyber Physical Systems, 2 Volume Set4193232UNINA