10606nam 22004813 450 991087713930332120240624084505.01-394-21266-61-394-21265-8(MiAaPQ)EBC31499747(Au-PeEL)EBL31499747(CKB)32322697000041(EXLCZ)993232269700004120240624d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierIndustrial and Manufacturing Designs Quantitative and Qualitative Analysis1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (423 pages)1-394-21174-0 Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Demonstrating the Role of Qualitative and Quantitative Information in Industrial and Manufacturing Designs -- 1.1 Introduction -- 1.2 Literature Review -- 1.3 Decision-Making (DM) and Framework -- 1.4 Directory of Cases -- 1.4.1 Role of Qualitative or Quantitative Criteria Toward Solar Panel Evaluation -- 1.4.1.1 Summary and Discussions Toward Evaluating Solar Panels -- 1.4.2 Role of Qualitative or Quantitative Criteria Toward Optimization of Automatic/Robotic Welding Systems -- 1.4.2.1 Summary and Discussions Toward Evaluating Welding System -- 1.4.3 Role of Qualitative or Quantitative Criteria Toward Selection of Smart Alloys and Materials -- 1.4.3.1 Summary and Discussions Toward Selection of Smart Alloys and Materials -- 1.4.4 Role of Qualitative or Quantitative Criteria Toward Logistic Service Provider Evaluation -- 1.4.4.1 Summary and Discussions Toward Evaluation of Logistic Service Provider -- 1.4.5 Role of Qualitative or Quantitative Criteria Toward Machine Tool Evaluation -- 1.4.5.1 Summary and Discussions Toward Evaluation of Machine Tool -- 1.4.6 Role of Qualitative or Quantitative Criteria Toward Industrial Robot Selection -- 1.4.6.1 Summary and Discussions Toward Selection of Industrial Robot -- 1.5 Critical Aspects -- 1.6 Implication and Discussions -- 1.7 Conclusions -- References -- Chapter 2 Sustainable Supply Chain Management Practices in Developing Economies: A Qualitative Mapping Approach -- 2.1 Introduction -- 2.2 Literature Review -- 2.2.1 Sustainable Supply Chain Management -- 2.2.2 Sustainable Supply Chain Management Practices -- 2.2.3 Challenges of Integrating SSCM -- 2.2.4 Strategies for Enhancing SSCM Integration -- 2.3 Methodology -- 2.3.1 Data Collection -- 2.3.2 Data Analysis -- 2.4 Results -- 2.4.1 SSCM Practices.2.4.1.1 Green Packaging -- 2.4.1.2 Green Production -- 2.4.1.3 Stakeholder Engagement -- 2.4.1.4 Supplier Collaboration -- 2.4.1.5 Risk Mitigation -- 2.4.1.6 Social Sustainability -- 2.4.1.7 Innovative Infrastructure and Technology Systems -- 2.4.2 SSCM Challenges -- 2.5 Discussion on Results -- 2.6 Conclusion and Recommendations -- References -- Chapter 3 Advocating Lean Practices and Strategies in Decision-Making for Reinforcing Industrial and Manufacturing Designs -- 3.1 Introduction -- 3.2 Literature Review -- 3.3 Lean Tools, Motivation, and Methodology -- 3.4 Lean Theory and Practices -- 3.4.1 Lean Practices (Segment 1) -- 3.4.1.1 Value Stream Mapping (VSM) -- 3.4.1.2 Kaizen -- 3.4.1.3 5S -- 3.4.1.4 KANBAN -- 3.4.1.5 Six Sigma -- 3.4.1.6 Total Productive Maintenance (TPM) -- 3.4.1.7 Total Quality Management (TQM) -- 3.4.1.8 Overall Equipment Effectiveness (OEE) -- 3.4.1.9 Plan-Do-Check-Act (PDCA) -- 3.4.1.10 Inventory Management -- 3.4.1.11 Production Leveling -- 3.4.1.12 Zero Defect (ZD) Concept -- 3.4.1.13 Bottleneck Analysis (BA) -- 3.4.1.14 Root Cause Analysis (RCA) -- 3.4.1.15 Just in Time (JIT) -- 3.4.1.16 Time and Motion Study -- 3.4.1.17 Single-Minute Exchange Dies (SMED) -- 3.4.1.18 DMAIC -- 3.4.1.19 Poka-Yoke -- 3.4.2 Lean Practices (Second Segment) -- 3.4.2.1 Redundancy -- 3.4.2.2 Digitalization -- 3.4.2.3 Health, Safety, and Allowance for Continuous Flow -- 3.4.2.4 Simplification and Standardization -- 3.4.2.5 Teamwork and Partnering -- 3.5 Lean Strategy: Discussions and Implications -- 3.6 Lean-Based Case Investigations and Discussions -- 3.6.1 Lean Manufacturing is a Vital Tool to Enhance Productivity in Manufacturing -- 3.6.2 The Linkage Between Lean and Sustainable Manufacturing for Attaining Refined Performance -- 3.6.3 A Conceptual Model of Lean Manufacturing Dimensions for Sustainability.3.6.4 Lean Practices Align Toward the Health and Safety of Workers in Manufacturing Industries (MIs) -- 3.6.5 The Linkage Between Lean and Agile Manufacturing for Work-In-Progress (WIP) Control -- 3.6.6 Adaptations of Lean Practices in SMEs to Support Industry 4.0 in Manufacturing -- 3.6.7 Implementation of Lean Practices in the Water Heater Manufacturing Industry for Value Adding -- 3.6.8 Lean Practices in Indian Machine Tool Industries for Receiving Productivity -- 3.6.9 Lean Manufacturing (LM) Practices for Influencing Process-Based Innovation and Performance -- 3.6.10 The Implementation of Lean Manufacturing in the Furniture Industry -- 3.6.11 Implementation of Lean Manufacturing in the Electronics Industry -- 3.7 Modeling of Lean Under Industrial and Manufacturing Sphere -- 3.7.1 Lean Modeling in Manufacturing Industries -- 3.7.2 Lean Modeling in Academic Institutes -- 3.7.3 Lean Modeling in Managerial Structure and Service-Related Organizations -- 3.7.4 Lean Modeling in Social Fields -- 3.7.5 Lean Modeling in Environmental Science -- 3.7.6 Lean Modeling in Economics -- 3.7.7 Lean Modeling in the Automobile Industry -- 3.8 Conclusions -- References -- Chapter 4 A Qualitative Study to Rank Non-Conventional Energy Sources for Industrial Sustainability and Energy Management Decisions Using MoSCoW Prioritization Method -- 4.1 Introduction -- 4.1.1 Major Non-Conventional Energy Sources -- 4.1.1.1 Solar Energy -- 4.1.1.2 Wind Energy -- 4.1.1.3 Hydroelectric Power -- 4.1.1.4 Biomass Energy -- 4.1.1.5 Geothermal Energy -- 4.1.1.6 Tidal and Wave Energy -- 4.1.1.7 Hydrogen Fuel Cells -- 4.1.2 Significance of Non-Conventional Energy Source -- 4.1.2.1 Environmental Benefits -- 4.1.2.2 Energy Security -- 4.1.2.3 Economic Benefits -- 4.1.2.4 Resource Sustainability -- 4.1.2.5 Climate Change Mitigation -- 4.1.2.6 Technological Advancement.4.1.3 Scope of Non-Conventional Energy in Industrial Sustainability -- 4.1.4 Problem Formulation -- 4.1.5 Objectives of Chapter -- 4.1.6 Methodology of Chapter -- 4.1.7 Organization of Chapter -- 4.2 Review of Literature -- 4.2.1 Solar Energy -- 4.2.2 Wind Energy -- 4.2.3 Hydropower -- 4.2.4 Biomass and Bioenergy -- 4.2.5 Geothermal Energy -- 4.2.6 Tidal and Wave Energy -- 4.3 Current Scenario of Non-Conventional Sources in Industrial Sustainability -- 4.3.1 Wind Energy -- 4.3.2 Hydroelectric Power -- 4.3.3 Biomass Energy -- 4.3.4 Geothermal Energy -- 4.3.5 Tidal and Wave Energy -- 4.3.6 Hydrogen Fuel Cells -- 4.3.7 Energy Storage -- 4.3.8 Policy and Regulation -- 4.3.9 Integration and Grid Management -- 4.4 Overview of Indian Non-Conventional Energy Sector -- 4.4.1 SWOT Analysis of Non-Conventional Energy Sources -- 4.4.1.1 Strength -- 4.4.1.2 Weaknesses -- 4.4.1.3 Opportunity -- 4.4.1.4 Threats -- 4.4.2 Energy Management Decision in Indian Context -- 4.5 Qualitative Analysis Using MoSCoW Method -- 4.5.1 Research Design -- 4.5.2 Renewable Energy Technology Dimensions Based on Industrial Sustainability -- 4.5.3 MoSCoW Prioritization Approach -- 4.5.4 Results -- 4.6 Discussion -- 4.7 Conclusion -- 4.7.1 Limitations -- 4.7.2 Further Avenues -- References -- Chapter 5 Response Surface Methodology: A Statistical Tool to Optimize Process Parameters (Quantitative Data) to Maximize the Microbial Biomass and Their Bioactive Metabolites -- 5.1 Introduction -- 5.2 Conventional Methods for Multifactor Experimental Design -- 5.2.1 Full Factorial Design -- 5.2.2 Fractional Factorial Design -- 5.2.3 One-Factor-at-a-Time (OFAT) Design -- 5.2.4 Central Composite Design (CCD) -- 5.2.5 Box-Behnken Design -- 5.2.6 Taguchi Method -- 5.2.7 Latin Square Design -- 5.3 Response Surface Methodology (RSM) -- 5.4 RSM in Bioprocessing/Fermentation.5.4.1 RSM for Antibiotic Production from Microorganisms -- 5.4.2 RSM in Enzyme Production -- 5.4.3 RSM for Bioethanol Production -- 5.4.4 RSM in Biosurfactant Production -- 5.4.5 RSM in Heavy Metal Pollution Elimination -- 5.5 Role of Quantitative Data in RSM -- 5.6 Conclusion -- References -- Chapter 6 Evaluating Mass-Spring-Damper Systems and Models for Reinforcing Engineering Designs: A Qualitative and Quantitative Approach -- 6.1 Introduction -- 6.2 Extensive Review of Existing Optimization Models for Mass Damper Systems -- 6.3 Use of Mass Damper Systems: Active and Passive -- 6.4 Brief Review of Optimization Models for Mass Damper Systems -- 6.4.1 Modal Analysis-Based Optimization -- 6.4.2 Optimization in the Frequency Domain -- 6.4.3 Time-Domain Optimization -- 6.4.4 Multi-Objective Optimization -- 6.5 Algorithm of Particle Swarm Optimization (PSO) -- 6.6 Benefits of Optimizing Mass Damper Systems -- 6.6.1 Vibration Reduction -- 6.6.2 Maintenance and Repair Costs -- 6.6.3 Health and Well-Being -- 6.6.4 Repercussions for the Natural World -- 6.7 Role of Qualitative Optimization and Discussions -- 6.7.1 Language of the Developer -- 6.7.2 Conceptual Understanding -- 6.7.3 Trade-Off Analysis -- 6.7.4 Identifying Critical Factors -- 6.7.5 Non-Linear Effects -- 6.7.6 Sensitivity to Assumptions -- 6.7.7 Incorporating Practical Constraints -- 6.7.8 Iteration and Iterative Learning -- 6.7.9 Interdisciplinary Collaboration -- 6.7.10 Communication with Stakeholders -- 6.7.11 Risk Assessment and Mitigation -- 6.8 Conclusion -- References -- Chapter 7 A Fuzzy Decision Optimization of Wire-EDM Process for Reinforcing Manufacturing Design Under Quantitative Data -- 7.1 Introduction -- 7.2 Review of Literature -- 7.3 The Significant Facts Related to Design, Implementation, and Importance of Total Productive Maintenance Programs in Manufacturing Operations.7.4 Primary Objectives.Sahu Atul Kumar1751348Raut Rakesh D1751349Raja Rohit1668230Sahu Anoop Kumar1751350Sahu Nitin Kumar1751351MiAaPQMiAaPQMiAaPQBOOK9910877139303321Industrial and Manufacturing Designs4186272UNINA