05188nam 2200625Ia 450 991087694380332120200520144314.01-281-08795-597866110879513-527-60947-43-527-60922-9(CKB)1000000000376062(EBL)481299(SSID)ssj0000203895(PQKBManifestationID)11188362(PQKBTitleCode)TC0000203895(PQKBWorkID)10152153(PQKB)11353014(MiAaPQ)EBC481299(OCoLC)86175779(EXLCZ)99100000000037606220060721d2006 uy 0engur|n|---|||||txtccrModel based control case studies in process engineering /Paul Serban Agachi ... [et al.]Weinheim Wiley-VCHc20061 online resource (291 p.)Description based upon print version of record.3-527-31545-4 Includes bibliographical references and index.Model Based Control; Table of Contents; Preface; 1 Introduction; 1.1 Introductory Concepts of Process Control; 1.2 Advanced Process Control Techniques; 1.2.1 Key Problems in Advanced Control of Chemical Processes; 1.2.1.1 Nonlinear Dynamic Behavior; 1.2.1.2 Multivariable Interactions between Manipulated and Controlled Variables; 1.2.1.3 Uncertain and Time-Varying Parameters; 1.2.1.4 Deadtime on Inputs and Measurements; 1.2.1.5 Constraints on Manipulated and State Variables; 1.2.1.6 High-Order and Distributed Processes1.2.1.7 Unmeasured State Variables and Unmeasured and Frequent Disturbances1.2.2 Classification of the Advanced Process Control Techniques; 2 Model Predictive Control; 2.1 Internal Model Control; 2.2 Linear Model Predictive Control; 2.3 Nonlinear Model Predictive Control; 2.3.1 Introduction; 2.3.2 Industrial Model-Based Control: Current Status and Challenges; 2.3.2.1 Challenges in Industrial NMPC; 2.3.3 First Principle (Analytical) Model-Based NMPC; 2.3.4 NMPC with Guaranteed Stability; 2.3.5 Artificial Neural Network (ANN)-Based Nonlinear Model Predictive Control; 2.3.5.1 Introduction2.3.5.2 Basics of ANNs2.3.5.3 Algorithms for ANN Training; 2.3.5.4 Direct ANN Model-Based NMPC (DANMPC); 2.3.5.5 Stable DANMPC Control Law; 2.3.5.6 Inverse ANN Model-Based NMPC; 2.3.5.7 ANN Model-Based NMPC with Feedback Linearization; 2.3.5.8 ANN Model-Based NMPC with On-Line Linearization; 2.3.6 NMPC Software for Simulation and Practical Implementation; 2.3.6.1 Computational Issues; 2.3.6.2 NMPC Software for Simulation; 2.3.6.3 NMPC Software for Practical Implementation; 2.4 MPC General Tuning Guidelines; 2.4.1 Model Horizon (n); 2.4.2 Prediction Horizon (p); 2.4.3 Control Horizon (m)2.4.4 Sampling Time (T)2.4.5 Weight Matrices (Γ(/)(y) and Γ(/)(u)); 2.4.6 Feedback Filter; 2.4.7 Dynamic Sensitivity Used for MPC Tuning; 3 Case Studies; 3.1 Productivity Optimization and Nonlinear Model Predictive Control (NMPC) of a PVC Batch Reactor; 3.1.1 Introduction; 3.1.2 Dynamic Model of the PVC Batch Reactor; 3.1.2.1 The Complex Analytical Model of the PVC Reactor; 3.1.2.2 Morphological Model; 3.1.2.3 The Simplified Dynamic Analytical Model of the PVC Reactor; 3.1.3 Productivity Optimization of the PVC Batch Reactor; 3.1.3.1 The Basic Elements of GAs3.1.3.2 Optimization of the PVC Reactor Productivity through the Initial Concentration of Initiators3.1.3.3 Optimization of PVC Reactor Productivity by obtaining an Optimal Temperature Policy; 3.1.4 NMPC of the PVC Batch Reactor; 3.1.4.1 Multiple On-Line Linearization-Based NMPC of the PVC Batch Reactor; 3.1.4.2 Sequential NMPC of the PVC Batch Reactor; 3.1.5 Conclusions; 3.1.6 Nomenclature; 3.2 Modeling, Simulation, and Control of a Yeast Fermentation Bioreactor; 3.2.1 First Principle Model of the Continuous Fermentation Bioreactor3.2.2 Linear Model Identification and LMPC of the BioreactorFilling a gap in the literature for a practical approach to the topic, this book is unique in including a whole section of case studies presenting a wide range of applications from polymerization reactors and bioreactors, to distillation column and complex fluid catalytic cracking units. A section of general tuning guidelines of MPC is also present.These thus aid readers in facilitating the implementation of MPC in process engineering and automation. At the same time many theoretical, computational and implementation aspects of model-based control are explained, with a look at both linear and Chemical engineeringChemical process controlCase studiesPredictive controlCase studiesChemical engineering.Chemical process controlPredictive control660.2815Agachi Paul Serban883805MiAaPQMiAaPQMiAaPQBOOK9910876943803321Model based control4201398UNINA