01752nam0 2200409 i 450 VAN004747520240219030022.621978-08-17-63258-8softcover ISBN20060710d2004 |0itac50 baengUS|||| |||||ˆA ‰topological introduction to nonlinear analysisRobert F. Brown2. edBostonBirkhäuser2004XI, 184 p.24 cmVAN0241154ˆA ‰topological introduction to nonlinear analysis8162647-XXOperator theory [MSC 2020]VANC019759MF46AxxTopological linear spaces and related structures [MSC 2020]VANC022219MF58E07Variational problems in abstract bifurcation theory in infinite-dimensional spaces [MSC 2020]VANC022281MFDifferential EquationKW:KDistributionKW:KFunctional AnalysisKW:KOrdinary differential equationsKW:KPartial differential equationsKW:KTopologyKW:KBostonVANL000051BrownRobert F.VANV03775856656Birkhäuser <editore>VANV108193650Brown, R. F.Brown, Robert F.VANV036857Brown, R.F.Brown, Robert F.VANV064233ITSOL20240223RICABIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08VAN0047475BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 54-XX 0594 08 7408 I 20060710 Topological introduction to nonlinear analysis81626UNICAMPANIA05390nam 2200649Ia 450 991087672320332120200520144314.01-281-84314-897866118431443-527-61774-43-527-61775-2(CKB)1000000000377066(EBL)481335(OCoLC)289075526(SSID)ssj0000120436(PQKBManifestationID)11146453(PQKBTitleCode)TC0000120436(PQKBWorkID)10102320(PQKB)11182201(MiAaPQ)EBC481335(PPN)153531282(EXLCZ)99100000000037706619960213d2004 uy 0engur|n|---|||||txtccrChemical mechanical planarization of microelectronic materials /Joseph M. Steigerwald, Shyam P. Murarka, Ronald J. GutmannWeinheim Wiley-VCH20041 online resource (339 p.)Description based upon print version of record.0-471-13827-4 Includes bibliographical references and index.Chemical Mechanical Planarization of Microelectronic Materials; CONTENTS; Preface; 1 Chemical Mechanical Planarization - An Introduction; 1.1 Introduction; 1.2 Applications; 1.3 The CMP Process; 1.4 CMP Tools; 1.5 Process Integration; 1.6 Conclusion and Book Outline; References; 2 Historical Motivations for CMP; 2.1 Advanced Metallization Schemes; 2.1.1 Interconnect Delay Impact on Performance; 2.1.2 Methods of Reducing Interconnect Delay; 2.1.3 Planarity Requirements for Multilevel Metallization; 2.2 Planarization Schemes; 2.2.1 Smoothing and Local Planarization; 2.2.2 Global Planarization2.3 CMP Planarization2.3.1 Advantages of CMP; 2.3.2 Disadvantages of CMP; 2.3.3 The Challenge of CMP; References; 3 CMP Variables and Manipulations; 3.1 Output Variables; 3.2 Input Variables; References; 4 Mechanical and Electrochemical Concepts for CMP; 4.1 Preston Equation; 4.2 Fluid Layer Interactions; 4.3 Boundary Layer Interactions; 4.3.1 Fluid Boundary Layer; 4.3.2 Double Layer; 4.3.3 Metal Surface Films; 4.3.4 Mechanical Abrasion; 4.4 Abrasion Modes; 4.4.1 Polishing vs. Grinding; 4.4.2 Hertzian Indentation vs. Fluid-Based Wear; 4.5 The Polishing Pad; 4.5.1 Pad Materials and Properties4.5.2 Pad Conditioning4.6 Electrochemical Phenomena; 4.6.1 Reduction-Oxidation Reactions; 4.6.2 Pourbaix Diagrams; 4.6.3 Mixed Potential Theory; 4.6.4 Example: Copper CMP in NH3-Based Slurries; 4.6.5 Example: Copper-Titanium Interaction; 4.7 Role of Chemistry in CMP; 4.8 Abrasives; References; 5 Oxide CMP Processes - Mechanisms and Models; 5.1 The Role of Chemistry in Oxide Polishing; 5.1.1 Glass Polishing Mechanisms; 5.1.2 The Role of Water in Oxide Polishing; 5.1.3 Chemical Interactions Between Abrasive and Oxide Surface; 5.2 Oxide CMP in Practice; 5.2.1 Polish Rate Results5.2.2 Planarization Results5.2.3 CMP in Manufacturing; 5.2.4 Yield Issues; 5.3 Summary; References; 6 Tungsten and CMP Processes; 6.1 Inlaid Metal Patterning; 6.1.1 RIE Etch Back; 6.1.2 Metal CMP; 6.2 Tungsten CMP; 6.2.1 Surface Passivation Model for Tungsten CMP; 6.2.2 Tungsten CMP Processes; 6.3 Summary; References; 7 Copper CMP; 7.1 Proposed Model for Copper CMP; 7.2 Surface Layer Formation - Planarization; 7.2.1 Formation of Native Surface Films; 7.2.2 Formation of Nonnative Cu-BTA Surface Film; 7.3 Material Dissolution; 7.3.1 Removal of Abraded Material7.3.2 Increasing Solubility with Complexing Agent7.3.3 Increasing Dissolution Rate with Oxidizing Agents; 7.3.4 Chemical Aspect of the Copper CMP Model; 7.4 Preston Equation; 7.4.1 Preston Coefficient; 7.4.2 Polish Rates; 7.4.3 Comparison of Kp Values; 7.5 Polish-Induced Stress; 7.6 Pattern Geometry Effects; 7.6.1 Dishing and Erosion in Cu/SiO2 System; 7.6.2 Optimization of Process to Minimize Dishing and Erosion; 7.6.3 Summary; References; 8 CMP of Other Materials and New CMP Applications; 8.1 The Front-End Applications in Silicon IC Fabrication8.1.1 Polysilicon CMP for Deep Trench Capacitor FabricationChemical Mechanical Planarization (CMP) plays an important role in today's microelectronics industry. With its ability to achieve global planarization, its universality (material insensitivity), its applicability to multimaterial surfaces, and its relative cost-effectiveness, CMP is the ideal planarizing medium for the interlayered dielectrics and metal films used in silicon integrated circuit fabrication. But although the past decade has seen unprecedented research and development into CMP, there has been no single-source reference to this rapidly emerging technology-until now.ChemicaMicroelectronicsMaterialsGrinding and polishingMicroelectronicsMaterials.Grinding and polishing.621.3815621.38152Steigerwald Joseph M1760797Murarka S. P463885Gutmann Ronald J1760798MiAaPQMiAaPQMiAaPQBOOK9910876723203321Chemical mechanical planarization of microelectronic materials4199904UNINA