05013nam 2200661 a 450 991087665280332120200520144314.01-118-62343-61-299-31512-70-470-39401-31-61344-816-3(CKB)3190000000024942(EBL)700697(SSID)ssj0000799323(PQKBManifestationID)11438351(PQKBTitleCode)TC0000799323(PQKBWorkID)10763547(PQKB)11605076(MiAaPQ)EBC700697(PPN)248332139(EXLCZ)99319000000002494220100202d2010 uy 0engur|n|---|||||txtccrFatigue of materials and structures /edited by Claude Bathias, Andre PineauLondon ISTE ;Hoboken Wiley20101 online resource (527 p.)ISTE ;v.53Description based upon print version of record.1-84821-051-5 Includes bibliographical references and index.Cover; Fatigue of Materials and Structures; Title Page; Copyright Page; Table of Contents; Foreword; Chapter 1. Introduction to Fatigue: Fundamentals and Methodology; 1.1. Introduction to the fatigue of materials; 1.1.1. Brief history of fatigue: its technical and scientific importance; 1.1.2. Definitions; 1.1.3. Endurance diagrams; 1.2. Mechanisms of fatigue damage; 1.2.1. Introduction/background; 1.2.2. Initiation of fatigue cracks; 1.2.3. Propagation of fatigue cracks; 1.3. Test systems; 1.4. Structural design and fatigue; 1.5. Fatigue of polymers, elastomers and composite materials1.6. Conclusion1.7. Bibliography; Chapter 2. Modeling of Fatigue Strength and Endurance Curve; 2.1. Introduction; 2.2. Nature and aspect of the scatter of fatigue test results; 2.3. Determination of the endurance limit; 2.4. Estimation methods of fatigue resistance and standard deviation with N cycles; 2.4.1. Probit method; 2.4.2. Staircase method; 2.4.3. Iteration method; 2.4.4. Non-failed specimen method; 2.4.5. Choice of test method; 2.5. Mathematical representations and plotting methods of the Wöhler curve; 2.5.1. Introduction; 2.5.2. Mathematical representation of the Wöhler curve2.5.3. Adjustment methods of a Wöhler curve to test results2.6. Estimation of the cycle number N for a given level of stress amplitude; 2.6.1. Principle; 2.6.2. Set-up; 2.6.3. Application; 2.7. Influence of mechanical parameters on endurance; 2.7.1. Influence of the mean stress; 2.7.2. Influence of the nature of forces; 2.8. Relationship between endurance and mechanical characteristics (of steels); 2.8.1. Estimations of σD; 2.8.2. Estimation of standard deviations; 2.8.3. Conclusion; 2.9. Bibliography; Chapter 3. Fatigue Crack Initiation; 3.1. Introduction3.2. Physical mechanisms of crack initiation3.2.1. Three stages of fatigue failure: a reminder; 3.2.2. Influence of stress amplitude; 3.3. Methods of evaluating crack initiation; 3.3.1. Smooth specimens; 3.3.2. Notch effect; 3.4. Practical method of structure calculation; 3.4.1. Preliminary; 3.4.2. The problem to be solved; 3.4.3. Initiation parameters; 3.4.4. The master Wöhler curve (kt = 1); 3.4.5. Cumulative damage (kt = 1); 3.4.6. Specimens with kt > 1: correspondence curve; 3.4.7. Use of correspondence curves; 3.4.8. Plotting the correspondence curves; 3.4.9. Comments and conclusion3.5. BibliographyChapter 4. Low-cycle Fatigue; 4.1. Introduction; 4.1.1. Application domain of low cycle plastic fatigue; 4.1.2. General description of the test methods: main issues; 4.2. Phenomenological description of low-cycle fatigue; 4.2.1. Background; 4.2.2. Cyclic work hardening; 4.2.3. Cyclic stress-strain relationships; 4.2.4. Fatigue strength; 4.2.5. Mathematical equations; 4.2.6. General behavior: sequence effects and control mode; 4.3. Adaptation mechanism and cracking during low-cycle fatigue; 4.3.1. Introduction; 4.3.2. Adaptation of the material4.3.3. Description and elementary interpretation of the adaptation stage within structural alloys: steelsFatigue and fracture result in billions of dollars of damage each year.? This book examines the various causes of fatigue including crack growth, defects, temperature, environmental, and corrosion.?ISTEMaterialsFatigueMaterialsMechanical propertiesMicrostructureMaterialsFatigue.MaterialsMechanical properties.Microstructure.620.1/12Bathias Claude1606476Pineau A(Andre)883109MiAaPQMiAaPQMiAaPQBOOK9910876652803321Fatigue of materials and structures3974352UNINA