08437nam 2200649Ia 450 991087656440332120200520144314.01-282-38219-597866123821920-470-82358-50-470-82357-710.1002/9780470823583(CKB)2550000000006393(EBL)479840(SSID)ssj0000367636(PQKBManifestationID)11271228(PQKBTitleCode)TC0000367636(PQKBWorkID)10341886(PQKB)11320307(MiAaPQ)EBC479840(CaBNVSL)mat05681029(IDAMS)0b0000648145dfeb(IEEE)5681029(OCoLC)521034622(PPN)254926185(EXLCZ)99255000000000639320080630d2009 uy 0engur|n|---|||||txtccrWireless communications resource management /Byeong Gi Lee, Daeyoung Park, Hanbyul SeoSingapore ;Hoboken, NJ, USA J. Wiley & Sons (Asia)c20091 online resource (368 p.)Description based upon print version of record.0-470-82356-9 Includes bibliographical references and index.Preface xi -- About the Authors xv -- Abbreviations xvii -- PART I-CONCEPTS AND BACKGROUND -- 1 Introduction 3 -- 1.1 Evolution of Wireless Communications 3 -- 1.2 Wireless Resource Management 5 -- 1.2.1 Bandwidth Management 5 -- 1.2.2 Transmission Power Management 6 -- 1.2.3 Antenna Management 6 -- 1.2.4 Inter-cell Resource Management 6 -- 1.3 Organization of the Book 7 -- 2 Characteristics of Wireless Channels 9 -- 2.1 Channel Gain 9 -- 2.2 Large-scale Fading 11 -- 2.2.1 Path Loss 12 -- 2.2.2 Shadowing 16 -- 2.3 Small-scale Fading 17 -- 2.3.1 Fading in the Time Domain 20 -- 2.3.2 Fading in the Frequency Domain 24 -- 2.4 Technologies against Channel Fading 28 -- 2.4.1 Diversity 29 -- 2.4.2 Hybrid ARQ 32 -- 2.4.3 Adaptive Modulation and Coding 36 -- 3 Basic Concepts for Resource Management 41 -- 3.1 Definition of Resource Management 42 -- 3.1.1 Wireless Resources 42 -- 3.1.2 Problem Formulation 47 -- 3.2 Multiple-access Methods 51 -- 3.2.1 Frequency-division Multiple Access 52 -- 3.2.2 Time-division Multiple Access 53 -- 3.2.3 Code-division Multiple Access 55 -- 3.2.4 Orthogonal Frequency-division Multiple Access 59 -- 3.3 Quality of Services 63 -- 3.3.1 QoS Classification 65 -- 3.3.2 Prioritization and Fairness 66 -- 3.4 Resource Management in Protocol Layers 67 -- 3.4.1 Classical Protocol Layering 68 -- 3.4.2 Cross-layer Design in Wireless Resource Management 69 -- 4 Mathematical Tools for Resource Management 73 -- 4.1 Convex Optimization 74 -- 4.1.1 Basic Concepts 74 -- 4.1.2 Constrained Optimization 76 -- 4.1.3 Lagrange Dual Function 77 -- 4.1.4 Karush-Kuhn-Tucker Optimality Condition 82 -- 4.1.5 Application of Convex Optimization 83 -- 4.2 Dynamic Programming 86 -- 4.2.1 Sequential Optimization 86 -- 4.2.2 Markov Decision Process 93 -- 4.3 Analogy of Economics and Wireless Resource Management 98 -- 4.3.1 Economics Model 98 -- 4.3.2 Example of Wireless Resource Allocation 102 -- PART II-WIRELESS RESOURCE MANAGEMENTTECHNOLOGIES -- 5 Bandwidth Management 109.5.1 Differences between Wired and Wireless Communications110 -- 5.1.1 Statistical Multiplexing in a Wired Network 110 -- 5.1.2 Multiuser Diversity in a Wireless Network 110 -- 5.2 Schedulers based on Generalized Processor Sharing 113 -- 5.2.1 Generalized Processor Sharing 113 -- 5.2.2 Modifications of GPS for Wireless Channels 118 -- 5.3 Schedulers for Throughput Maximization 122 -- 5.3.1 Maximal-rate Scheduling 123 -- 5.3.2 Proportional Fairness Scheduling 124 -- 5.3.3 Temporal Fairness Scheduling 127 -- 5.3.4 Utilitarian Fairness Scheduling 129 -- 5.3.5 Scheduling based on Cumulative Distribution Function132 -- 5.3.6 Comparison of Scheduling Algorithms 135 -- 5.4 Delay Performance of Wireless Schedulers 140 -- 5.4.1 Throughput Optimality 140 -- 5.4.2 Modified Largest-Weight-Delay-First (LWDF) Scheduling143 -- 5.4.3 Exponential Rule Scheduling 148 -- 5.5 QoS in Wireless Scheduling and Admission Control 149 -- 5.5.1 Effective Bandwidth and Effective Capacity 151 -- 5.5.2 QoS Provision 154 -- 6 Transmission Power Management 161 -- 6.1 Transmission Power Management for Interference Regulation162 -- 6.1.1 Power Control with Strict SINR Requirement 165 -- 6.1.2 Utility-based Power Control 173 -- 6.1.3 Power Control along with Rate Control 184 -- 6.1.4 Power Control for Hybrid ARQ 195 -- 6.2 Transmission Power Management for Multiple ParallelSubchannels 198 -- 6.2.1 Single-user Case 199 -- 6.2.2 Multiuser Case I: Throughput Maximization 202 -- 6.2.3 Multiuser Case II: Utility Maximization 207 -- 6.2.4 Multiuser Case III: With Time Diversity 211 -- 6.3 Transmission Power Adaptation to Time-varying Environments215 -- 6.3.1 Capacity of Time-varying Channels 216 -- 6.3.2 Transmission Time and Energy Efficiency 224 -- 6.3.3 Power Adaptation Based on Buffer and Channel States237 -- 7 Antenna Management 245 -- 7.1 Capacity of MIMO Channels 245 -- 7.1.1 Capacity of a Deterministic Channel 246 -- 7.1.2 Ergodic Capacity 248 -- 7.1.3 Outage Capacity 249 -- 7.2 MIMO Transmission 251.7.2.1 Diversity Transmission 251 -- 7.2.2 Spatial Multiplexing 257 -- 7.2.3 Diversity/Multiplexing Tradeoff 262 -- 7.3 Multiuser MIMO 266 -- 7.3.1 Uplink Channel 267 -- 7.3.2 Dirty-paper Coding 274 -- 7.3.3 Downlink Channel 276 -- 7.3.4 Downlink-Uplink Duality 281 -- 7.3.5 Downlink Precoding Schemes 284 -- 8 Inter-cell Resource Management 289 -- 8.1 Inter-cell Interference Management 290 -- 8.1.1 Fixed Channel Allocation 290 -- 8.1.2 Dynamic Channel Allocation (DCA) 296 -- 8.1.3 Channel Allocation based on SINR Measurement 302 -- 8.1.4 Channel Allocation with Inter-cell Power Control 306 -- 8.2 Handoff Management 313 -- 8.2.1 Handoff Procedure and Performance 314 -- 8.2.2 Resource Reservation via Guard Channel Policy 319 -- 8.2.3 Handoff Request Queuing and Soft Handoff 328 -- 8.2.4 Advanced Handoff Management Schemes 334 -- Index 343.Wireless technologies continue to evolve to address the insatiabledemand for faster response times, larger bandwidth, and reliabletransmission. Yet as the industry moves toward the development ofpost 3G systems, engineers have consumed all the affordablephysical layer technologies discovered to date. This hasnecessitated more intelligent and optimized utilization ofavailable wireless resources. Wireless Communications Resource Managem ent, Lee, Park,and Seo cover all aspects of this critical topic, from thepreliminary concepts and mathematical tools to detaileddescriptions of all the resource management techniques. Readerswill be able to more effectively leverage limited spectrum andmaximize device battery power, as well as address channel loss,shadowing, and multipath fading phenomena.. Presents the latest resource allocation techniques for new andnext generation air interface technologies. Arms readers with the necessary fundamentals and mathematicaltools. Illustrates theoretical concepts in a concrete manner. Gives detailed coverage on scheduling, power management, andMIMO techniques. Written by an author team working in both academia andindustryWireless Communications Resource Managementis geared forengineers in the wireless industry and graduate studentsspecializing in wireless communications. Professionals in wirelessservice and device manufacturing industries will find the book tobe a clear, up-to-date overview of the topic. Readers will benefitfrom a basic, undergraduate-level understanding of networks andcommunications.Course instructors can access lecture materials at the companionwebsite:(www.wiley.com/go/bglee).Wireless communication systemsRadio resource management (Wireless communications)Wireless communication systems.Radio resource management (Wireless communications)621.384Lee Byeong Gi502093Park Daeyoung845342Seo Hanbyul845341MiAaPQMiAaPQMiAaPQBOOK9910876564403321Wireless communications resource management1886543UNINA