01214nam a22002651i 450099100203778970753620040120113207.0040407s2000 it |||||||||||||||||eng b12861273-39ule_instARCHE-084089ExLDip.to Scienze StoricheitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.628.1680Dosi, Cesare89140Controlling groundwater pollution from agricultural nonpoint sources :an overview of policy instruments /Cesare Dosi and Naomi ZeitouniMilano :Fondazione ENI Enrico Mattei,200030 p. ;21 cmNote di lavoro della Fondazione ENI Enrico Mattei ;103.2000Acque sotterraneeInquinamentoZeitouni, Naomiauthorhttp://id.loc.gov/vocabulary/relators/aut485701.b1286127302-04-1416-04-04991002037789707536LE009 GEOG.COLL.14G/10312009000312548le009-E0.00-l- 00000.i1342173616-04-04Controlling groundwater pollution from agricultural nonpoint sources1448499UNISALENTOle00916-04-04ma -engit 0103514nam 22006255 450 991087468950332120260112104209.0978303162348610.1007/978-3-031-62348-6(CKB)33388295200041(MiAaPQ)EBC31552528(Au-PeEL)EBL31552528(DE-He213)978-3-031-62348-6(PPN)279809999(EXLCZ)993338829520004120240723d2024 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierNormal 2-Coverings of the Finite Simple Groups and their Generalizations /by Daniela Bubboloni, Pablo Spiga, Thomas Stefan Weigel1st ed. 2024.Cham :Springer Nature Switzerland :Imprint: Springer,2024.1 online resource (182 pages)Lecture Notes in Mathematics,1617-9692 ;23529783031623479 - Introduction -- Preliminaries -- Linear groups -- Unitary groups -- Symplectic groups -- Odd dimensional orthogonal groups -- Orthogonal groups with Witt defect 1 -- Orthogonal groups with Witt defect 0 -- Proofs of the main theorems -- Almost simple groups having socle a sporadic simple group -- Dropping the maximality -- Degenerate normal 2-coverings.This book provides a complete and comprehensive classification of normal 2-coverings of non-abelian simple groups and their generalizations. While offering readers a thorough understanding of these structures, and of the groups admitting them, it delves into the properties of weak normal coverings. The focal point is the weak normal covering number of a group G, the minimum number of proper subgroups required for every element of G to have a conjugate within one of these subgroups, via an element of Aut(G). This number is shown to be at least 2 for every non-abelian simple group and the non-abelian simple groups for which this minimum value is attained are classified. The discussion then moves to almost simple groups, with some insights into their weak normal covering numbers. Applications span algebraic number theory, combinatorics, Galois theory, and beyond. Compiling existing material and synthesizing it into a cohesive framework, the book gives a complete overview of this fundamental aspect of finite group theory. It will serve as a valuable resource for researchers and graduate students working on non-abelian simple groups,.Lecture Notes in Mathematics,1617-9692 ;2352Group theoryDiscrete mathematicsGraph theoryGroup Theory and GeneralizationsApplications of Discrete MathematicsGraph TheoryGrups finitsthubLlibres electrònicsthubGroup theory.Discrete mathematics.Graph theory.Group Theory and Generalizations.Applications of Discrete Mathematics.Graph Theory.Grups finits512.2Bubboloni Daniela1749576Spiga Pablo1367250Weigel Thomas Stefan1749577MiAaPQMiAaPQMiAaPQ9910874689503321Normal 2-Coverings of the Finite Simple Groups and Their Generalizations4183846UNINA