10927nam 22004693 450 991087219390332120240708084509.09783031607615(electronic bk.)9783031607608(MiAaPQ)EBC31516631(Au-PeEL)EBL31516631(CKB)32657996500041(EXLCZ)993265799650004120240708d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPhytoremediation Biological Treatment of Environmental Pollution1st ed.Cham :Springer International Publishing AG,2024.©2024.1 online resource (334 pages)Print version: Madhav, Sughosh Phytoremediation Cham : Springer International Publishing AG,c2024 9783031607608 Intro -- Preface -- Contents -- Cyanoremediation: An Overview -- 1 Introduction -- 2 Heavy Metal Pollutants -- 3 Organic and Inorganic Pollutant Contamination -- 4 Remediation of Contaminants -- 4.1 Physical Methods -- 4.1.1 Thermal Treatment -- 4.1.2 Soil Washing -- 4.1.3 Soil Replenishment Techniques -- 4.1.4 Vitrification -- 4.1.5 Encapsulation -- 4.1.6 Electroremediation -- 4.2 Chemical Methods -- 4.2.1 Precipitation -- 4.2.2 Ion Exchange -- 4.2.3 Flocculation -- 4.2.4 Chemical Extraction and Oxidation -- 4.2.5 Chemical Leaching -- 4.2.6 Membrane Filter Processes -- 4.2.7 Soil Amendments (Chemical Fixation) -- 4.3 Biological Methods -- 5 Bioremediation: An Eco-Friendly Approach -- 5.1 Intrinsic Bioremediation -- 5.2 Engineered Bioremediation -- 6 Cyanoremediation -- 7 Mechanism of Cyanoremediation -- 7.1 Mechanisms of Biosorption -- 7.2 Mechanisms of Bioaccumulation -- 8 Factors Affecting Cyanoremediation -- 8.1 pH -- 8.2 Competing Ions -- 8.3 Temperature -- 8.4 Contact Time -- 8.5 Initial Metal Concentration -- 8.6 Biosorbent Dosage -- 8.7 Modification of Biosorbents -- 8.8 Chemical Treatment of Biosorbent -- 9 Advantages of Cyanoremediation -- 10 Challenges of Cyanoremediation -- 11 Conclusions and Future Perspectives -- References -- Phytoremediation of Contaminated Water, Its Mechanisms, and Advancements -- 1 Introduction -- 2 Water Contaminants -- 3 Phytoremediation of Contaminated Water -- 4 Mechanism of Phytoremediation -- 4.1 Phytoextraction -- 4.2 Phytodegradation -- 4.3 Phytostabilization -- 4.4 Phytovolatilization -- 4.5 Phycoremediation -- 4.6 Rhizofiltration -- 4.7 Rhizodegradation -- 5 Advances in Phytoremediation -- 5.1 Hyperaccumulator -- 5.2 Physical-/Chemical-Assisted Materials -- 5.3 Microbial Stimulation -- 6 Factors Affecting Phytoremediation -- 7 Limitations and Disadvantages of Phytoremediation -- 8 Conclusion.References -- An Overview of Different Plant Species Used for the Phytoremediation of Soil Contaminants -- 1 Introduction -- 2 Plant Species Implemented for Inorganic and Organic Contaminants -- 2.1 Woody Plant Species -- 2.2 Ornamental Plant Species -- 2.3 Aromatic Plant Species -- 2.4 Oil-Yielding Plant Species -- 2.5 Fibrous Plant Species -- 3 Proper Disposal of Contaminated Biomass -- 3.1 Heat Treatment -- 3.2 Extraction Treatment -- 3.3 Microbial Treatment -- 3.4 Compression Landfill -- 3.5 Synthesis of Nanomaterials -- 4 Limitation -- 5 Conclusion -- References -- Removal of Toxic Chemicals from Air Through Phytoremediation -- 1 Introduction -- 2 Toxic Chemicals in Air/Air Pollutants -- 2.1 Particulate Matter (PM) -- 2.2 Sulfate, Sulfuric Acid, and Sulfur Oxides (SOx) -- 2.3 Ozone -- 2.4 Nitrogen Oxide (NOx) -- 2.5 Carbon Monoxide (CO) -- 2.6 Benzene -- 2.7 Formaldehyde -- 3 Phytoremediation and Mechanisms of Phytoremediation -- 3.1 Absorption of Air Pollutants -- 3.1.1 Stomata -- 3.1.2 Cuticle -- 3.1.3 Mesophyll and Cell Barriers -- 4 Phytoremediation of Different Air Pollutants -- 4.1 Phytoremediation of Particulate Matter (PM) -- 4.2 Phytoremediation of Volatile Organic Compounds (VOC) -- 4.3 Phytoremediation of Inorganic Air Pollutants (IAPs) -- 4.4 Phytoremediation of Organic Compounds -- 5 Limitations and Disadvantages of Phytoremediation -- 6 Conclusion -- References -- Bamboo: A Potential Candidate for Phytoremediation of Chemical Pollutants and Heavy Metals -- 1 Introduction -- 2 Phytoremediation Potential of Bamboo -- 3 Socio-economic and Other Ecological Significance of Bamboo -- 4 Effect of Abiotic Environmental Stresses on Bamboo -- 5 Stepping Up Efforts to Improve Metal Uptake -- 5.1 Intercropping -- 5.2 Use of Additives and Amendments -- 5.2.1 Natural Additives -- 5.2.2 Chemical Additives -- 5.3 Surface Cover.5.4 Microbe-Stimulated Phytoremediation -- 5.5 Transgenic Plants -- 6 Recommendations and Future Research Prospects -- 7 Conclusions -- References -- Phytoremediation of Chemical Pollutants and Heavy Metals by Higher Plants -- 1 Introduction -- 2 Chemical Pollutants and Heavy Metals -- 2.1 Heavy Metal Uptake and Translocation by Plants -- 3 The Mechanism of Detoxification in Terrestrial Plants -- 3.1 Avoidance -- 3.2 Phytoremediation -- 3.2.1 Phytostabilization -- 3.2.2 Phytovolatilization -- 3.2.3 Phytoextraction -- 3.2.4 Phytovolatilization -- 3.2.5 Phytofiltration -- 3.3 Removal of Dyes by Higher Plants -- 3.4 Effect of Metals on Plant Health -- 3.4.1 Enhancing Plant Performance -- 3.5 Land Plants That Hyperaccumulate Heavy Metals -- 4 Future Aspects -- 4.1 Gene Editing -- 4.2 Metal Bioavailability -- 5 Conclusion -- References -- Phytoremediation of Heavy Metals by Vetiver Grass near Riverbeds -- 1 Introduction -- 2 Role of Heavy Metals on Water Quality -- 3 Phytoremediation by Vetiver Grass System -- 4 Literature Review on the Potential of VG in Heavy Metal Absorbance -- 5 Characteristics of Vetiver Grass -- 5.1 Morphological Characteristics -- 5.2 Genetic Characteristics -- 5.3 Physiological Characteristics -- 5.4 Economic Characteristics -- 6 Mechanism of Phytoremediation in Vetiver Grass -- 7 Conclusion -- References -- Genomically Enhanced Microorganisms (GEMs): Biological Gems in the Maintenance of the Equilibrium Endurance of the Ecosystem -- 1 Introduction -- 2 Current Status of Metals and Metalloid Contamination in the Ecosystem -- 3 Metal and Metalloid Accumulation in Living Organisms -- 4 Genetically Engineered Microbes -- 5 Construction of Genomically Enhanced Microbes -- 6 Molecular Tools Used for Enhancing the Genome of Microorganisms -- 6.1 Rational Designing of Genome -- 6.2 Direct Evolution Engaged in Enhancement of the Genome.6.3 Enhancement of Microorganismal Genome Through Mutagenesis -- 6.4 Metabolic Enhancer of the Genome -- 6.5 Transcriptome Profiling of Microorganisms -- 6.6 Genetically Encoded Proteins and Peptides -- 7 Pathways of Metal and Metalloid Biosorption in GEMs -- 8 Genomically Enhanced Bacteria in Bioremediation -- 9 Genomically Enhanced Fungi in Mycoremediation -- 10 Genomically Enhanced Algae in Phycoremediation -- 11 Risk Related to GEMs -- 12 Future Prospective -- References -- Phytoremediation of Heavy Metal Pollutants Using Fungi -- 1 Introduction -- 1.1 History of Phytoremediation -- 2 Possible Origins of Heavy Metal Contamination and Its Effect on Plants and Humans -- 3 Fungal Phytoremediation and Factors Affecting Phytoremediation -- 3.1 Factors Affecting Fungal Phytoremediation -- 4 Mechanisms of Fungi-Mediated Phytoremediation of Pollutants -- 5 Significance of AMF in Bioremediation of Pollutants and Protection of Plant Health -- 5.1 Arsenic (As) -- 5.2 Cadmium (Cd) -- 5.3 Lead (Pb) -- 5.4 Chromium (Cr) -- 6 Endophytic Fungi -- 6.1 Importance of Fungal Endophytes in Phytoremediation -- 7 Conclusion -- References -- Harnessing the Potential of Mycorrhizae in Phytoremediation Copper (Cu) from Soil -- 1 Introduction -- 2 Phytoremediation of Copper -- 2.1 The Mechanism of Copper Remediation Through Arbuscular Mycorrhizal Fungi -- 2.2 Increased Nutrient Acquisition in the Host Plant Colonized by AMF -- 3 Activation of Plant Defense System by AMF -- 3.1 Activation of Antioxidative Compounds -- 3.2 Enhanced Copper Adsorption -- 3.3 Activation of Transporters -- 3.4 Enhanced Synthesis of Chaperon Proteins -- 3.5 Amelioration of Copper Toxicity in Plants -- 4 Conclusion -- References -- Arbuscular Mycorrhizal Fungi (AMF): A Natural Tool for Phytoremediation of Heavy Metals (HMs) -- 1 Introduction -- 2 Mycorrhiza and Metalliferous Environments.2.1 Metal-Polluted Soil Phytoremediation by Mycorrhiza -- 2.1.1 Detoxification and Tolerance Mechanism of Heavy Metals by Fungal Mycorrhiza -- 2.2 Phytoremediation of Heavy Metals (HMs) by Arbuscular Mycorrhizal Fungi (AMFs) -- 2.2.1 Increase of Nutrient Uptake in the Host Plant Induced by AFMs -- 2.2.2 Enzymatic and Non-enzymatic Activation Defense System Induced by AMF -- 2.2.3 Plant Biomass and Tolerance Improvement by AFMs in Heavy Metal-Rich Soil -- 2.2.4 HM Remediation by AFM-Induced Changes in Root Morphology in Mycorrhizal Plant -- 2.2.5 Sequestration and Accumulation of HMs by AMF-Assisted Glomalin -- 2.2.5.1 Accumulation of Heavy Metals by AMF -- 3 Challenges and Future Prospects -- 4 Discussion and Conclusion -- References -- Phytoremediation of Chemical Pollutants and Toxic Metals by Bacteria and Plant-Growth-Promoting Rhizobacteria -- 1 Introduction -- 2 Sources of Heavy Metal in Soil -- 3 Consequences of Heavy Metals on Human Health -- 4 Phytoremediation Techniques -- 4.1 Phytostabilization -- 4.2 Phytovolatilization -- 4.3 Phytoextraction -- 4.4 Phytofiltration -- 5 Function of Plant-Linked Microbes in Enhancing the Phytoremediation Process -- 5.1 Adsorption of Heavy Metals by Bacteria -- 5.2 Promoting Taking Up of Heavy Metals by Hyperaccumulators -- 5.3 Efficiency of Plant Growth-Promoting Bacteria (PGPB) -- 5.4 Mechanism Used to Directly Promote Plant Growth -- 5.4.1 Auxins -- 5.4.2 Cytokinin and Gibberellins -- 5.4.3 Bacterial Enzyme ACC Deaminase (1-Aminocyclopropane-1 Carboxylate) -- 5.4.4 Role of Siderophores Secreted by Bacteria -- 5.4.5 Solubilization of Phosphate -- 5.4.6 Key Role of Bacteria in Fixation of Nitrogen -- 6 Challenges in Bacteria-Aided Phytoremediation -- 7 Conclusion -- References -- Unveiling the role of PGPRs (Plant Growth-Promoting Rhizobacteria) in phytoremediation of chemical pollutants and heavy metals.1 Introduction.Madhav Sughosh1080759Gupta Gyan Prakash1744182Yadav Rajiv Kumar1744183Mishra Ritu1744184Hullebusch Eric van1449234MiAaPQMiAaPQMiAaPQ9910872193903321Phytoremediation4174018UNINA