01240nam--2200397---450-99000086972020331620050629115601.088-8358-114-80086972USA010086972(ALEPH)000086972USA01008697220020114d2001----km-y0itay0103----baitaITy|||z|||001yyEducazione formazione e mediaJacques GonnetRomaArmandocopyr. 2001128 p.24 cmTeoria della comunicazione e didattica dell'immagine2001Teoria della comunicazione e didattica dell'immagineComunicazioni di massaFunzione educativa302.2GONNET,Jacques451765ITsalbcISBD990000869720203316IV.1. 302(XV A COLL 54/3)160836 L.M.XV A COLL00079026BKumaCHIARA9020020114USA011037CHIARA9020020114USA01103820020403USA011731PATRY9020040406USA011700COPAT19020050629USA011156Éducation et médias51182UNISA01728nam 2200505 450 991082522110332120160401143239.01-4704-2751-6(CKB)3860000000041521(MiAaPQ)EBC4901853(RPAM)18760751(PPN)191290890(EXLCZ)99386000000004152120150826h20152015 uy| 0engurcnu||||||||rdacontentrdamediardacarrierStability of KAM tori for nonlinear Schrödinger equation /Hongzi Cong, Jianjun Liu, Xiaoping YuanProvidence, Rhode Island :American Mathematical Society,[2015]©20151 online resource (100 pages)Memoirs of the American Mathematical Society,0065-9266 ;volume 239, number 1134"Volume 239, number 1134 (sixth of 6 numbers), January 2016."1-4704-1657-3 Includes bibliographical references and index.Memoirs of the American Mathematical Society ;v. 239, no. 1134.Gross-Pitaevskii equationsNonlinear wave equationsPerturbation (Mathematics)Gross-Pitaevskii equations.Nonlinear wave equations.Perturbation (Mathematics)530.12/4Cong Hongzi1982-1696692Liu Jianjun1983-Yuan Xiaoping1965-MiAaPQMiAaPQMiAaPQBOOK9910825221103321Stability of KAM tori for nonlinear Schrödinger equation4076840UNINA03868nam 22006255 450 991086915710332120251217133045.09783031590948(electronic bk.)978303159093110.1007/978-3-031-59094-8(MiAaPQ)EBC31511222(Au-PeEL)EBL31511222(CKB)32650215900041(DE-He213)978-3-031-59094-8(PPN)279809972(EXLCZ)993265021590004120240702d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierAsymptotic Expansions and Summability Application to Partial Differential Equations /by Pascal Remy1st ed. 2024.Cham :Springer Nature Switzerland :Imprint: Springer,2024.1 online resource (248 pages)Lecture Notes in Mathematics,1617-9692 ;2351Print version: Remy, Pascal Asymptotic Expansions and Summability Cham : Springer,c2024 9783031590931 Includes bibliographical references and index.- Part I Asymptotic expansions -- Taylor expansions -- Gevrey formal power series -- Gevrey asymptotics -- Part II Summability -- k-summability: definition and first algebraic properties -- First characterization of the k-summability: the successive derivatives -- Second characterization of the k-summability: the Borel-Laplace method -- Part III Moment summability -- Moment functions and moment operators -- Moment-Borel-Laplace method and summability -- Linear moment partial differential equations.This book provides a comprehensive exploration of the theory of summability of formal power series with analytic coefficients at the origin of Cn, aiming to apply it to formal solutions of partial differential equations (PDEs). It offers three characterizations of summability and discusses their applications to PDEs, which play a pivotal role in understanding physical, chemical, biological, and ecological phenomena. Determining exact solutions and analyzing properties such as dynamic and asymptotic behavior are major challenges in this field. The book compares various summability approaches and presents simple applications to PDEs, introducing theoretical tools such as Nagumo norms, Newton polygon, and combinatorial methods. Additionally, it presents moment PDEs, offering a broad class of functional equations including classical, fractional, and q-difference equations. With detailed examples and references, the book caters to readers familiar with the topics seeking proofs or deeper understanding, as well as newcomers looking for comprehensive tools to grasp the subject matter. Whether readers are seeking precise references or aiming to deepen their knowledge, this book provides the necessary tools to understand the complexities of summability theory and its applications to PDEs.Lecture Notes in Mathematics,1617-9692 ;2351Mathematical analysisMathematical physicsAnalysisMathematical PhysicsExpansions asimptòtiquesthubEquacions en derivades parcialsthubSumabilitatthubLlibres electrònicsthubMathematical analysis.Mathematical physics.Analysis.Mathematical Physics.Expansions asimptòtiquesEquacions en derivades parcialsSumabilitat515.353Remy Pascal1743650MiAaPQMiAaPQMiAaPQ9910869157103321Asymptotic Expansions and Summability4171903UNINA