01537nam--2200481---450-99000096871020331620050216103918.088-245-0518-Xv.10096871USA010096871(ALEPH)000096871USA01009687120020219d--------km-y0itay0103----baitaIT||||||||001yyEconomia e societàMax Weberintroduzione di Pietro Rossi[traduzione di Tullio Bagiotti, Franco Casablanca, Pietro Rossi]MilanoEdizion di Comunitàv.21 cmPaperbacks1Wirtschaft und GesellschaftV.1: 1995. - LXIII, 321 p2001Paperbacks12001Wirtschaft und Gesellschaft13080SociologiaEconomia e società301WEBER,Max32785ROSSI,PietroITsalbcISBD990000968710203316II.5. 1020/1(VARIE COLL. 1165/1)131723 LMVARIE COLL.II.5. 1020/1b(VARIE COLL. 1165/1 BIS)131724 LMVARIE COLL.II.5. 1020/1a(VARIE COLL. 1165/1 A)131725 LMVARIE COLL.BKUMAPATTY9020020219USA01122720020403USA011739PATRY9020040406USA011707COPAT29020050216USA011039Wirtschaft und Gesellschaft13080UNISA03207nam 22005775 450 991086525890332120240530101645.09789819702251981970225910.1007/978-981-97-0225-1(MiAaPQ)EBC31357826(Au-PeEL)EBL31357826(CKB)32169704300041(OCoLC)1436830086(DE-He213)978-981-97-0225-1(EXLCZ)993216970430004120240529d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierKolmogorov Operators and Their Applications /edited by Stéphane Menozzi, Andrea Pascucci, Sergio Polidoro1st ed. 2024.Singapore :Springer Nature Singapore :Imprint: Springer,2024.1 online resource (354 pages)Springer INdAM Series,2281-5198 ;569789819702244 9819702240 Chapter 1. Local Regularity for the Landau Equation (with Coulomb Interaction Potential) -- Chapter 2. L 2 Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states -- Chapter 3. New Perspectives on recent trends for Kolmogorov operators -- Chapter 4. Schauder estimates for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and Holder continuous in space.-Chapter 5. A new proof of the geometric Soboleva embedding for generalised Kolmogorov operators -- Chapter 6. Intrinsic Taylor formula for non-homogeneous Kolmogorov-type Lie groups -- Chapter 7. Form-boundedness and sdes with singular drift -- Chapter 8. About the regularity of degenerate non-local Kolmogorov operators under diffusive perturbations -- Chapter 9. Integration by parts formula for exit times of one dimensional diffusions -- Chapter 10. On averaged control and iteration improvement for a class of multidimensional ergodicdiffusions.Kolmogorov equations are a fundamental bridge between the theory of partial differential equations and that of stochastic differential equations that arise in several research fields. This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, Itô processes, applications to kinetic theory and to finance.Springer INdAM Series,2281-5198 ;56Differential equationsStochastic analysisDifferential EquationsStochastic AnalysisDifferential equations.Stochastic analysis.Differential Equations.Stochastic Analysis.515.35Menozzi Stéphane1742556Pascucci Andrea475297Polidoro Sergio1742557MiAaPQMiAaPQMiAaPQBOOK9910865258903321Kolmogorov Operators and Their Applications4169306UNINA