10864nam 22004573 450 991086418990332120240526090246.0981-9719-95-X(MiAaPQ)EBC31353441(Au-PeEL)EBL31353441(CKB)32142947200041(EXLCZ)993214294720004120240526d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierLocating Technology Education in STEM Teaching and Learning What Does the 't' Mean in STEM?1st ed.Singapore :Springer,2024.©2024.1 online resource (312 pages)Contemporary Issues in Technology Education Series981-9719-94-1 Intro -- Acknoweldgements -- Contents -- Contributors -- 1 Locating Technology Education in STEM Teaching and Learning: So, What Does the T Mean in STEM? -- Reference -- 2 A Philosophy for the Place of Technology in STEM -- 2.1 Introduction -- 2.2 Historical and Cultural Aspects -- 2.3 Linguistic Aspects -- 2.4 Cognitive Psychology -- 2.5 Anthropological Aspects -- 2.6 Ethical Aspects -- 2.7 Conclusion -- References -- 3 STEM as Integration-Maximising Learning Opportunities -- 3.1 Introduction -- 3.2 History Behind the Notion of Integrated Learning -- 3.3 Theories and Approaches Pertaining to Integration of Learning and STEM Learning -- 3.4 STEM Integration -- 3.4.1 Levels of Integration -- 3.4.2 Approaches to Integration -- 3.5 Technology and STEM Integration -- 3.5.1 Advantages of STEM Integration -- 3.6 Cautions for STEM Integration -- 3.7 Future Recommendations -- 3.8 Conclusion -- References -- 4 Technology and Digital Learning Tools: Technology Education and Educational Technology -- 4.1 Introduction -- 4.2 Technology Education -- 4.3 Educational Technology -- 4.4 Digital (Educational?) Technology -- 4.4.1 What Do We Mean by "Digital"? -- 4.4.2 Digital Educational Technology -- 4.5 Digital Educational Technology: Challenges for STEM Education -- 4.5.1 Access-Digital Inequalities -- 4.5.2 Assumptions-Digital Natives? -- 4.6 Adopting Digital Educational Technology in STEM Education -- 4.6.1 RAT Model -- 4.6.2 Technological Pedagogical Content Knowledge (TPACK) -- 4.6.3 Digital Competence -- 4.7 Using Digital Educational Technology to Facilitate STEM Education -- 4.7.1 Online Interactive Learning -- 4.7.2 Simulation -- 4.7.3 Gaming -- 4.8 Conclusion -- References -- 5 Addressing Curriculum Knowledge in STEM Projects -- 5.1 Introduction -- 5.1.1 A Coordinated Approach -- 5.1.2 A Collaborative Approach -- 5.1.3 The Integration of STEM Subjects.5.2 Technology's Contribution to STEM Education Whatever the Main Subject Focus -- 5.2.1 Science and Maths' Contribution to Technology-Focussed STEM Projects -- 5.3 A Teacher's Personal Subject Construct for Teaching the T in STEM -- 5.4 The Way that STEM Student Learning Can Be Mapped -- 5.5 Conclusion -- References -- 6 STEM Literacy in Technology Education -- 6.1 Introduction -- 6.2 Disciplinary Literacies -- 6.3 Operationalizing STEM Literacy -- 6.3.1 Understanding Literacy -- 6.3.2 Developing Authentic STEM Literacy Through Technological Literacy -- 6.4 Technological Literacy and Social-Emotional Learning -- 6.5 Looking Forward -- References -- 7 The Role of Assessment of Technology in STEM Education -- 7.1 The Nature of the Activity -- 7.2 The Continuum of Evidence -- 7.3 Planning for Good Evidence -- 7.3.1 Realisation of Systems and Products -- 7.3.2 Capturing and Communicating Good Evidence -- 7.4 The Importance of Communication -- 7.5 Valuing Holism -- 7.6 Concluding Comments -- References -- 8 Approaches to Teaching STEM -- 8.1 Introduction -- 8.2 Constructivism as a Theory on Learning or Learning Approach -- 8.3 Perspectives on and Sub-approaches to Constructivism -- 8.3.1 Perspectives on Constructivism -- 8.3.2 Sub-approaches to Constructivism -- 8.4 Constructivist Teaching Approaches or Strategies from a Technology Education Perspective -- 8.4.1 Translating Learning Approaches into Teaching Approaches or Strategies -- 8.4.2 Problem-Based Teaching Approaches/Strategies -- 8.4.3 Project-Based Teaching Approaches/Strategies -- 8.4.4 Design-Based Teaching Approaches/Strategies -- 8.5 The Affordances of These Perspectives, Approaches, Sub-approaches and Related Teaching Strategies for the Application of STEM Education -- 8.5.1 Orientation -- 8.5.2 Inquiry-Based Teaching -- 8.5.3 Problem-Based and Project-Based Teaching.8.5.4 Design-Based Teaching -- 8.6 Conclusion -- References -- 9 Technology and Engineering in STEM Education -- 9.1 Introduction -- 9.2 Defining Technology -- 9.2.1 Is Engineering a Subset of Technology? -- 9.2.2 Technology Referents -- 9.2.3 Technological Practice -- 9.2.4 Changes in Technology: Due to Connections and the Convergence of Systems -- 9.3 Defining Engineering -- 9.3.1 Engineering Practice -- 9.3.2 Changes in Engineering: Due to Design, Science, Computation, and Mathematical Modeling -- 9.4 Differences Between Technology and Engineering -- 9.5 Why Study Technology and Engineering? -- 9.5.1 To Increase Prosperity, Productivity, and Beneficent Societal Growth -- 9.5.2 To Understand How People, the Environment, History, and Culture Have Been Affected by and Can Affect Technological Change -- 9.5.3 To Contribute to and Thereby Enable Participatory Democracy to Function -- 9.5.4 To Be Exposed to Productive Personal Career Opportunities -- 9.6 STEM Education -- 9.7 The Role of Technology and Engineering in STEM Education -- 9.8 What to Teach: T&amp -- E Content is Based on Standards and Thematic Ideas -- 9.8.1 Standards -- 9.8.2 Thematic Ideas -- 9.9 How to Teach: Use of Design Pedagogy -- 9.9.1 Studies of Design-Based Instruction -- 9.10 Can Technology Teachers Teach Engineering? -- 9.11 Conclusion -- References -- 10 Food Technology-Centred Approaches to STEM Learning -- 10.1 Introduction -- 10.2 Professional Learning and Development -- 10.2.1 Technological and Critical Thinking -- 10.3 Technology Education, Food Education, and STEM Education -- 10.3.1 I Am Projects -- 10.3.2 TENZile Project -- 10.4 Links to Science, Technology, Engineering, and Mathematics -- 10.4.1 Pedagogical Implications -- 10.4.2 Professional Development Implications -- 10.5 Conclusion -- References -- 11 Textile Technologies in STEM Education -- 11.1 Introduction.11.2 Literature Review -- 11.3 How Are Textiles Currently Used in STEM Education? -- 11.4 How Do STEM Principles Apply to Textile Design? -- 11.5 Which Textile Case Studies Could Be Used in STEM? -- 11.6 Science v's Art: Why is There Opposition Between Science and the Arts? -- 11.7 Conclusion -- 11.8 A Short Manifesto for Textile's Educators -- References -- 12 Case Studies of STEM Projects -- 12.1 Introduction -- 12.1.1 Preamble -- 12.2 The Framework Through Which the Case Studies Will Be Presented -- 12.3 The Case Studies -- 12.3.1 Case Study 1 -- 12.3.2 Case Study 2 -- 12.4 Commentary -- References -- 13 Integrating Technology in STEM with Integrity: Avoiding the Mucky Brown Paint -- 13.1 Introduction -- 13.1.1 Multidisciplinary Integration -- 13.1.2 Interdisciplinary Integration -- 13.2 Transdisciplinary Integration -- 13.3 Conclusion-Avoiding the Mucky Brown Paint: Implications for the Classroom -- References -- 14 STEM Projects: Outside of the Curriculum -- 14.1 Introduction -- 14.2 Objectives of STEM Projects in Informal Education -- 14.3 STEM Projects in Informal Education -- 14.3.1 School Clubs -- 14.3.2 Schools and Corporate Camps -- 14.3.3 Teaching Aids from Publishers -- 14.3.4 Museums -- 14.3.5 STEM Contests -- 14.3.6 Web-Based Learning Platforms -- 14.4 Advantages of and Challenges with STEM Projects in Informal Education -- 14.4.1 Advantage 1: Diverse STEM Projects -- 14.4.2 Advantage 2: Experience-Based STEM Projects -- 14.4.3 Advantage 3: Multi-Strategy STEM Projects -- 14.4.4 Advantage 4: STEM Projects with Diverse Teaching Materials -- 14.4.5 Issue 1: Insufficient Funding -- 14.4.6 Issue 2: Misleading STEM Projects -- 14.4.7 Issue 3: Lack of Professional Instructors (Facilitators) -- 14.4.8 Issue 4: Inequity of Gender and Race in STEM Education -- 14.5 Conclusions and Implications -- References.15 Experts' Views on the Role of the 'T' and 'E' in Integrated STEM Education and Implications for Out-of-Field Teaching -- 15.1 Introduction -- 15.2 Experts' Views on the Role of 'T' and 'E' in Integrated STEM Education -- 15.3 Subject Integrity Must Be Maintained as Part of Integrative STEM -- 15.4 Technology and Engineering Are Implicit in Integrated STEM Teaching Activities -- 15.5 Engineering Design Processes Are Central to STEM -- 15.6 Inputting the 'T' and the 'E' in STEM Demands Collaboration and Cooperation -- 15.7 Teachers Require Specialised Competence for Integrating the 'T' and the 'E' in Out-of-Field STEM Teaching -- 15.8 Conclusions and Educational Implications -- References -- 16 STEM in Senior Secondary -- 16.1 Introduction -- 16.2 A View on STEM -- 16.3 Why STEM Education? -- 16.4 STEM and the Future of University Studies -- 16.5 Introducing STEM Education at Senior Secondary Schools -- 16.6 Implementing a STEM Education Project -- 16.7 Suggestions and Recommendations -- 16.8 A Final Reflection -- References -- 17 Makerspaces and the Position of T in STEM -- 17.1 Introduction -- 17.2 What Is Making and How Does It Place T in STEM? -- 17.3 The Cognitive and Pedagogical Value of Making -- 17.4 Makerspaces in Practice -- 17.5 Making and the T in STEM -- 17.5.1 Embedding Making in the School Curriculum Through Makerspaces -- 17.6 Is Making a Necessity or a Luxury? -- 17.7 Conclusion -- References -- 18 'We Treat Everyone Equally, but…'-Gendered Attitudes and Perceptions in STEM -- 18.1 Introduction -- 18.2 Gendered Attitudes and Perceptions in STEM -- 18.3 Data and Respondents -- 18.3.1 Data Collection -- 18.3.2 Analysis of the Data -- 18.3.3 Respondents -- 18.4 Findings -- 18.4.1 Gendered Perceptions and Attitudes Regarding Male and Female Students -- 18.4.2 Images of Work Life Created in Studies.18.4.3 Study Environment and Fitness to the Community.Contemporary Issues in Technology Education SeriesFox-Turnbull Wendy1740971Williams P. John1047237MiAaPQMiAaPQMiAaPQBOOK9910864189903321Locating Technology Education in STEM Teaching and Learning4166905UNINA