10870nam 22004813 450 991086418260332120240527084506.03-031-57843-0(MiAaPQ)EBC31353576(Au-PeEL)EBL31353576(CKB)32145928800041(EXLCZ)993214592880004120240527d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierEmerging Applications of Novel Nanoparticles1st ed.Cham :Springer International Publishing AG,2024.©2024.1 online resource (352 pages)Lecture Notes in Nanoscale Science and Technology Series ;v.373-031-57842-2 Intro -- Preface -- Contents -- 2D Nanomaterials for Adsorption of Wastewater Pollutants -- 1 Introduction -- 2 Classification of 2D Materials -- 3 2D Materials Preparation Routes -- 4 Properties of 2D Materials -- 5 2D Materials as Adsorbents for Wastewater Pollutants -- 5.1 Adsorption of Organic Pollutants -- 5.2 Adsorption of Inorganic Pollutants -- 6 Adsorption Mechanism -- 7 Desorption and Regeneration Studies -- 8 Antimicrobial Activity of 2D Materials -- 9 Challenges and Future Perspectives -- 10 Conclusion -- References -- Unveiling the Power of Nanomaterials in the Area of Forensics -- 1 Introduction -- 1.1 Properties Imparted by Nanomaterials -- 1.2 Challenges of Forensic Sciences -- 2 Nanomaterials in Forensic Analysis: Basics -- 2.1 Ethical Considerations -- 3 Nanotechnology-Enhanced Fingerprint Analysis -- 3.1 Fingerprint Analysis -- 3.2 Nanomaterials for Fingerprint Analysis -- 3.3 Techniques for Fingerprint Detection -- 3.3.1 Nanoscale Imaging Techniques -- 3.3.2 Fluorescent Nanoparticles -- 3.3.3 Nanoscale Chemical Analysis -- 3.3.4 Quantum Dots -- 4 Nanoparticles in Trace Evidence Analysis -- 4.1 Nanomaterials for Trace Evidence Detection Including Hair, Fiber and Paint -- 4.2 Nanomaterials for Trace Illicit Drugs -- 4.3 Nanomaterials for Trace Explosives -- 4.4 Nanomaterials for GSR Analysis -- 5 Nanomaterials in DNA Profiling -- 5.1 Carbon Black Nanomaterials -- 5.2 Optimization of Analytical Techniques -- 6 Nano-scale Drug Analysis in Toxicology -- 6.1 Improved Sensitivity and Selectivity -- 6.2 Nanoparticle-Based Sensors -- 6.3 Lab-on-a-Chip Devices -- 6.4 Drug Delivery Systems -- 6.5 Biosensors and Biomarkers -- 7 Nanomaterials in Ballistics and Firearms Analysis -- 7.1 Improved Bullet Design -- 7.2 Reinforced Firearms Components -- 7.3 Enhanced Ammunition -- 7.4 Forensic Analysis -- 7.5 Traceable Markers.7.6 Smart Gun Technologies -- 7.7 Reduced Recoil and Noise -- 7.8 Detection and Identification -- 7.9 Material Analysis -- 8 Nanomaterials in Digital Forensics -- 8.1 Data Storage and Preservation -- 8.2 Nano-sized Sensors -- 8.3 Nanoparticle-Based Imaging -- 8.4 Nanotechnology-Enhanced Data Recovery -- 8.5 Forensic Analysis of Nanomaterials -- 8.6 Anti-Tampering Measures -- 8.7 Authentication and Encryption -- 8.8 Forensic Nanotechnology Laboratories -- 8.9 Challenges and Ethical Considerations -- 9 Nanotechnology for Crime Scene Investigation -- 9.1 Integration of Nanomaterials into Crime Scene Investigation Procedures -- 9.2 Potential of Nanosensors in Forensic Sciences for Evidence Detection, Collection and Analysis -- 9.2.1 Bodily Fluids and DNA -- 9.2.2 Biological Threat Detection -- 9.2.3 Chemical Detection -- 9.2.4 Gunshot Residue -- 9.2.5 Toxic Chemicals -- 9.2.6 Drugs and Narcotics -- 9.2.7 Covert Surveillance -- 9.2.8 Remote Sensing and Mapping -- 9.2.9 Integration with Drones and Robotics -- 9.3 Nanoscale Imaging Techniques for Mapping Crime Scenes -- 9.3.1 Scanning Electron Microscopy (SEM) -- 9.3.2 Atomic Force Microscopy (AFM) -- 9.3.3 Field Scanning Optical Microscopy (NSOM or SNOM) -- 9.3.4 Super-Resolution Optical Microscopy -- 9.3.5 Confocal Microscopy -- 9.3.6 Raman Microscopy -- 9.3.7 Electron Backscatter Diffraction (EBSD) -- 9.3.8 Infrared Microscopy -- 10 Challenges and Ethical Considerations -- 11 Future Discretions and Innovations -- 12 Conclusion -- References -- Buckypapers: Applications in Composite Materials -- 1 Introduction -- 2 Preparation Methods of BPs -- 2.1 Wet Method -- 2.2 Dry Method -- 3 Morphological Properties of BPs -- 3.1 Surface Area Assessment -- 3.2 Contact Angle -- 4 Physical Properties of BPs -- 4.1 Mechanical Properties of BPs -- 4.1.1 Theoretical Investigations of Mechanical Properties.4.2 Electrical Properties of BPs -- 4.3 Thermal Conductivity of BPs -- 5 Application of BPs in Composites -- 6 Conclusion -- References -- Nanoparticles for Diagnosis and Treatment of Infectious Diseases -- 1 Introduction -- 2 Brief About Nanoparticles -- 3 Nanoparticles for Diagnosis of Infectious Diseases -- 3.1 Point-of-Care Tests (POCT) -- 3.2 Nanoparticles in the Field of Diagnostics -- 3.2.1 Gold Nanoparticles -- 3.2.2 Quantum Dots (QDs) -- 3.2.3 Nanobarcodes -- 3.2.4 Magnetic Nanoparticles -- 3.2.5 Nanodiagnostics -- 4 Challenges and Limitations of Nanoparticles in Diagnosis of Infectious Diseases -- 5 Future of Nanoparticles in Medicinal Sciences -- 6 Conclusive Remarks -- References -- Ti3C2Tx MXene Based Nanostructured Materials for Emerging Applications -- 1 Introduction to Titanium Carbide MXenes -- 1.1 Titanium Carbide MXenes: Discovery and Background -- 1.2 Synthesis and Preparation Techniques -- 1.3 Structural and Chemical Properties of Ti3C2Tx MXenes -- 1.4 Characterization Methods -- 1.5 Versatile Applications -- 1.6 Future Perspectives -- 2 MXene Synthesis and Preparation -- 2.1 Top-Down Approach: Etching of MAX Phases -- 2.2 Bottom-Up Approach: Direct Synthesis -- 2.3 Surface Functionalization of Ti3C2Tx MXenes -- 2.4 Scalability and Manufacturing Considerations -- 3 Structural and Chemical Properties -- 3.1 Crystal Structure and Lattice Parameters -- 3.2 Surface Chemistry and Functional Groups -- 3.3 Electronic Properties and Band Structure -- 3.4 Mechanical Properties of Ti3C2Tx MXenes -- 4 Titanium Carbide MXenes in Electronics and Optoelectronics -- 5 Titanium Carbide MXenes in Sensors and Actuators -- 6 Titanium Carbide MXenes in Biomedical Applications -- 7 Titanium Carbide MXenes in Industrial Applications -- 8 Commercialization and Market Prospects of Titanium Carbide MXenes -- 9 Conclusion.9.1 Summary of Titanium Carbide MXenes' Versatility -- 9.2 Impact on Emerging Technologies -- References -- Molybdenum Disulfide: A 2D Material -- 1 Introduction -- 2 Crystal Structure and Properties -- 2.1 Crystal Structure -- 2.2 Properties of MoS2 -- 2.2.1 Layered Structure -- 2.2.2 Semiconductor Behavior -- 2.2.3 Mechanical Strength -- 2.2.4 Lubricating Properties (Fleisch &amp -- Bauer, 1988 -- Winer, 1967 -- Holinski &amp -- Gänsheimer, 1972 -- Dimigen et al., 1985 -- Zeming, 1982) -- 2.2.5 Catalytic Activity -- 2.2.6 Optical Properties -- 2.2.7 Thermal Properties -- 2.2.8 Electrical Conductivity -- 2.2.9 Biocompatibility -- 2.2.10 Environmental Stability -- 2.2.11 Tunable Properties -- 2.2.12 2D Material -- 2.2.13 Exfoliation -- 3 Methods of Synthesis -- 3.1 Chemical Vapor Deposition (CVD) -- 3.2 Hydrothermal Synthesis -- 3.3 Solvothermal Synthesis -- 3.4 Mechanical Exfoliation (Scotch Tape Method) -- 3.5 Liquid Phase Exfoliation -- 3.6 Electrochemical Synthesis -- 3.7 Template-Assisted Synthesis -- 4 Applications -- 4.1 Electronics and Optoelectronics Industry -- 4.2 Catalysis and Energy Applications -- 4.3 Lubrication and Tribology Applications -- 4.4 Biomedical and Sensing -- 4.5 Nanotechnology Applications -- 5 Conclusion -- References -- Surface Functionalization of 2D MOs for Enhanced Biocompatibility and Biomedical Applications -- 1 Introduction -- 2 Properties of 2D Mos -- 2.1 Structural Properties -- 2.2 Physicochemical Properties -- 2.3 Magnetic Properties -- 2.4 Stability -- 3 Synthesis of 2D-Metal Oxides -- 3.1 Top-Down Approach -- 3.2 Bottom-Up Approach -- 4 Functionalization of 2D-Metal Oxides -- 4.1 Chemical Functionalization -- 4.2 Physical Adsorption -- 4.3 Oxygen Vacancies and Doping Functionalization -- 5 Biocompatibility Studies of 2D-Functionalized Metal Oxides -- 6 Biomedical Applications of 2D-Metal Oxides.6.1 Drug Delivery Systems -- 6.2 Biosensing -- 6.3 Bioimaging -- 7 Challenges and Conclusion -- References -- Application of a Novel Nanotherapeutic Strategy in Ayurvedic Treatment -- 1 Introduction -- 2 Application of Nanotherapy in Herbal Medicine -- 3 Novel Nanotherapeutic Implementation in Herbal Industry -- 4 Statistical Analysis of the Use of Nanotechnology in Medical Science -- 5 Technological Requirement for the Use of Nanotherapy in Herbal Medicine -- 6 Environmental Consideration of the Use of Nanotherapy in Herbal Medicine -- 7 Economic Consideration of the Use of Application of Nanotherapeutic Strategy in Herbal Medicines -- 8 Policy and Regulation Required for the Effective Implementation of Nanophytomedicines -- 9 Health and Safety Consideration of the Use of Nanothrepeutic Techniques in Herbal Medicine -- 10 Quality Control for the Use of Nanophytomedicines -- 11 Challenges of the Use of Nanophytomedicines in Current Healthcare System -- 12 Future Prospective -- 13 Conclusion -- References -- Biosynthesis of Iron Oxide Nanoparticles (IONPs): Toxicity Evaluation and Applications for Magnetic Resonance Imaging and Magnetic Hyperthermia -- 1 Introduction -- 2 Synthesis of Iron Oxide Nanoparticles -- 3 Characterization of Biosynthesis Iron Oxide Nanoparticles -- 4 Applications of Iron Oxide Nanoparticles -- 4.1 Iron Oxide Nanoparticles as Contrast Agent for Magnetic Resonance Imaging -- 4.2 Iron Oxide Nanoparticles for Magnetic Hyperthermia -- 5 Toxicity Evaluation of Biosynthesis Iron Oxide Nanoparticles -- 6 Challenges and Future Prospect -- 7 Conclusions -- References -- Effect of Annealing Temperature on Structural, Morphological and Optical Properties of CdZnTe Thin Films -- 1 Introduction -- 2 Experimental Procedure -- 2.1 Sample Preparation and Experimental Setup -- 2.2 Preparation of Bath -- 3 Results and Discussions.3.1 Structural Analysis.Lecture Notes in Nanoscale Science and Technology SeriesAnil Bansal Suneev1740622Khanna Virat1740623Balakrishnan Nilanthy1740624Gupta Pallav1265026MiAaPQMiAaPQMiAaPQBOOK9910864182603321Emerging Applications of Novel Nanoparticles4166400UNINA