01082nam a2200289 i 450099100092086970753620020502181106.0940329s1988 it ||| | ita 8838308217b11437261-39ule_instPRUMB51512ExLScuola per assistenti socialiita306.46Laplantine, François427029Antropologia della malattia /François Laplantine[Firenze] :Sansoni,[1988]265 p. ;22 cm.Saggi [Sansoni]Trad. di: Antropologie de la maladie.MalattieAspetti socio-culturali.b1143726101-03-1701-07-02991000920869707536LE024 M IG I 21LE024N-950le021ex DUSS-E0.00-l- 00000.i1162196501-07-02LE02112021000213090le021-E0.00-l- 01010.i1564903904-12-14Anthropologie de la maladie37203UNISALENTOle02101-01-94ma -itait 0101081nam a2200265|i 450099100380718970753620021223130838.0021209s2000 ||| u u engub11867206-39ule_instLE02988952ExLISUFI - Sett. Diritti e Politiche Euromediterraneeita382Kheir-El-Din, H532221Textiles and clothing in the Mediterranean region :challenges of returning to GATT disciplines /H Kheir-El-Din and Abdel-FattahCairo :Economic research forum for the Arab countries, Iran and Turkey,200029 p. :ill. ;21 cm.ERF Working Papers ;2008GATTAbdel-Fattah, M..b1186720628-04-1723-12-02991003807189707536LE029 382 DIN01.01 WP1LE029-4588le029-E0.00-no 00000.i1212015723-12-02Textiles and clothing in the Mediterranean region901033UNISALENTOle02901-01-02ma -engxx 0101305nam a22002771i 450099100235830970753620040306162043.0040407s1982 it |||||||||||||||||eng b12910806-39ule_instARCHE-089042ExLDip.to Scienze StoricheitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.387.51Changing maritime transport /Calogero Muscarà, Mario Soricillo, Adalberto Vallega editorsNapoli :[IGI],19822 v. ;24 cmTrasporti marittimiAspetti economiciVallega, Adalbertoauthorhttp://id.loc.gov/vocabulary/relators/aut35360Muscarà, Calogeroauthorhttp://id.loc.gov/vocabulary/relators/aut34794Soricillo, Marioauthorhttp://id.loc.gov/vocabulary/relators/aut297951.b1291080602-04-1416-04-04991002358309707536LE009 GEOG.12-396V. 112009000237636le009-E0.00-l- 02120.i1347940416-04-04LE009 GEOG.12-396/aV. 212009000237254le009-E0.00-l- 01010.i1347941616-04-04Changing maritime transport1448906UNISALENTOle00916-04-04ma -engit 0204345nam 22006135 450 991086109950332120240517125435.0981-9920-96-510.1007/978-981-99-2096-9(MiAaPQ)EBC31345503(Au-PeEL)EBL31345503(CKB)32074570800041(DE-He213)978-981-99-2096-9(OCoLC)1434648246(EXLCZ)993207457080004120240517d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMachine Learning Assisted Evolutionary Multi- and Many- Objective Optimization /by Dhish Kumar Saxena, Sukrit Mittal, Kalyanmoy Deb, Erik D. Goodman1st ed. 2024.Singapore :Springer Nature Singapore :Imprint: Springer,2024.1 online resource (253 pages)Genetic and Evolutionary Computation,1932-0175981-9920-95-7 Introduction -- Optimization Problems and Algorithms -- Existing Machine Learning Studies on Multi-objective Optimization -- Learning to Converge Better and Faster -- Learning to Diversify Better and Faster -- Learning to Simultaneously Converge and Diversify Better and Faster -- Learning to Understand the Problem Structure -- ML-Assisted Analysis of Pareto-optimal Front -- Further Machine Learning Assisted Enhancements -- Conclusions.This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits. Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain. To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains.Genetic and Evolutionary Computation,1932-0175Artificial intelligenceMachine learningComputational intelligenceArtificial IntelligenceMachine LearningComputational IntelligenceArtificial intelligence.Machine learning.Computational intelligence.Artificial Intelligence.Machine Learning.Computational Intelligence.006.3Saxena Dhish Kumar1739483Mittal Sukrit1739484Deb Kalyanmoy725709Goodman Erik D1739485MiAaPQMiAaPQMiAaPQBOOK9910861099503321Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization4163486UNINA