02433nam 22005535 450 991084757980332120240627175453.0981-9986-68-010.1007/978-981-99-8668-2(CKB)31491856900041(MiAaPQ)EBC31278651(Au-PeEL)EBL31278651(DE-He213)978-981-99-8668-2(EXLCZ)993149185690004120240415d2024 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierHilbert C*- Modules and Quantum Markov Semigroups /by Lunchuan Zhang1st ed. 2024.Singapore :Springer Nature Singapore :Imprint: Springer,2024.1 online resource (222 pages)981-9986-67-2 Includes bibliographical references and index.Basic Theory of Hilbert C*-modules -- Kasprove’s Stabilization and Fredholm Generalized Index Theory -- Quantum Markov Semigroups and Operator-valued Dirichlet Forms.This book explains the basic theory of Hilbert C*-module in detail, covering a wide range of applications from generalized index to module framework. At the center of the book, the Beurling-Deny criterion is characterized between operator valued Dirichlet forms and quantum Markov semigroups, hence opening a new field of quantum probability research. The general scope of the book includes: basic theory of Hilbert C*-modules; generalized indices and module frames; operator valued Dirichlet forms; and quantum Markov semigroups. This book will be of value to scholars and graduate students in the fields of operator algebra, quantum probability and quantum information.Operator theoryFunctional analysisMarkov processesOperator TheoryFunctional AnalysisMarkov ProcessOperator theory.Functional analysis.Markov processes.Operator Theory.Functional Analysis.Markov Process.512.55Zhang Lunchuan1736266MiAaPQMiAaPQMiAaPQBOOK9910847579803321- Modules and Quantum Markov Semigroups4241130UNINA