10575nam 22004333 450 991084706900332120240405080248.03-031-43173-1(MiAaPQ)EBC31246286(Au-PeEL)EBL31246286(CKB)31320354900041(EXLCZ)993132035490004120240405d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSolar Thermal Energy Systems Fundamentals, Technology, Applications1st ed.Cham :Springer International Publishing AG,2024.©2024.1 online resource (1515 pages)3-031-43172-3 Intro -- Preface -- Part I -- Part II -- Acknowledgements -- Contents -- About the Authors -- Part IFundamentals -- 1 Energy -- 1.1 Energy Demand and Resources -- 1.2 Energy Consumption, Economic Performance and Resource Availability -- 1.3 Impact of Energy Demand and Population Growth -- 1.4 Energy Forms, Carriers and Conversion Processes, Exergy-Energy -- 1.5 Energy Demand and Economic Considerations -- 1.6 Sector Coupling-Power, Heat and Chemical Carriers -- References -- 2 Solar Radiation -- 2.1 The Sun as Energy Source -- 2.1.1 Structure and Composition of the Sun -- 2.1.2 Fusion Process Within the Sun -- 2.2 Extra-terrestrial Solar Radiation -- 2.2.1 Solar Constant -- 2.2.2 Spectrum of Extra-terrestrial Irradiation -- 2.2.3 Directional and Temporal Variation of Extra-terrestrial Irradiation -- 2.2.4 Daily and Monthly Sums of Extra-terrestrial Irradiation on Arbitrarily Inclined Surfaces -- 2.2.5 Tracking Surfaces -- 2.2.6 Shading of Surfaces -- 2.3 Terrestrial Solar Radiation -- 2.3.1 Attenuation Mechanisms in the Atmosphere -- 2.3.2 Technical Calculation of the Attenuation in the Atmosphere -- 2.3.3 Global, Direct, and Diffuse Irradiation -- 2.4 Calculation of Irradiation on Arbitrarily Inclined Surfaces -- 2.4.1 Circumsolar Radiation -- 2.4.2 Isotropic Sky Model -- 2.4.3 Anisotropic Sky Models -- 2.5 Statistical Distribution of Irradiation -- 2.6 Quantitative Measurement of Solar Radiation -- 2.6.1 Terrestrial Measurements -- 2.6.2 Satellite Data Evaluation -- 2.6.3 Composition of Representative Time Series of Solar Irradiation -- 2.6.4 Data Sources for Direct and Global Irradiation -- References -- 3 Optical Conversion -- 3.1 Electromagnetic Radiation -- 3.2 Radiation Transport in Transparent Media -- 3.2.1 Basic Definitions and Nomenclature -- 3.2.2 Origin of Absorption and Reflection in Transparent Media.3.2.3 Polarization, Refraction, and Reflection -- 3.2.4 Scattering and Absorption in Media -- 3.2.5 Transmission and Reflection in (Semi-)transparent Components -- 3.2.6 Anti-Reflection Coatings -- 3.3 Spectral Selectivity -- 3.3.1 Introduction -- 3.3.2 Selective Glazings -- 3.3.3 Design of Selective Absorbers -- 3.3.4 Production Methods for Selective Layers -- 3.3.5 Low and Medium Temperature Absorber Layers in Air/ Vacuum -- 3.3.6 Absorber Layers for High Temperature Applications -- 3.3.7 Degradation Mechanisms of Selective Absorber Layers -- 3.4 Optical Concentration -- 3.4.1 Motivation for Optical Concentration -- 3.4.2 Limits of Optical Concentration of Solar Radiation -- 3.4.3 Reflector Materials -- 3.4.4 Linear-Imaging Concentrators -- 3.4.5 Point-Imaging Concentrators -- 3.4.6 Non-Imaging Concentrators -- 3.4.7 Fresnel Concentrators -- 3.4.8 Practical Concentrators -- 3.5 Measurement Methods -- 3.5.1 Spectral Measurements-Reflectance and Transmittance -- 3.5.2 Scattering and Surface Characterization -- 3.5.3 Deflectometry -- 3.6 Modelling of Optical Systems -- 3.6.1 Monte Carlo Raytracing Techniques (MCRT)-Example PTC Collector -- 3.6.2 Modelling LFR Collectors -Convolution Methods -- 3.6.3 Conclusion -- References -- 4 Heat Transfer -- 4.1 Definition of a Passive Heat Transport -- 4.2 Heat Conduction in a Continuum -- 4.2.1 Initial and Boundary Conditions, Dimensionless Numbers -- 4.2.2 Stationary Heat Conduction -- 4.2.3 Transient Heat Conduction -- 4.2.4 Molecular Heat Conductivity -- 4.3 Radiation Heat Transfer -- 4.3.1 Fundamental Radiation Properties -- 4.3.2 Blackbody and Its Concept -- 4.3.3 Radiation Balance -- 4.3.4 Surface Properties and Radiation -- 4.3.5 Kirchhoff's Law and Grey Bodies -- 4.3.6 Radiosity and Irradiance -- 4.3.7 Radiation Transport Between Bodies -- 4.3.8 Radiation in the Presence of the Sun.4.4 Practical and Coupled Radiative-Convective Heat Transfer Problems -- 4.4.1 Non-Dimensional Numbers Characterizing Combined Problems -- 4.4.2 Radiative Transfer Equation and Simple Example -- 4.4.3 Coupled Heat Transfer Between Two Glass Panes -- 4.4.4 Effective Thermal Conductivity of Packed Beds -- References -- 5 Momentum and Energy Transport -- 5.1 Single Phase Convective Momentum and Heat Transport -- 5.1.1 Conservation Equations of Mass, Momentum, and Energy -- 5.1.2 Boundary Conditions and Similarity Laws -- 5.1.3 Similarity Laws in Fluid Mechanics -- 5.1.4 Vorticity, Stream Function and Total Head in Incompressible Fluids -- 5.1.5 Newtonian and Non-Newtonian Fluid Behaviour -- 5.1.6 Laminar Momentum Exchange -- 5.1.7 Boundary Layer Approximation -- 5.1.8 Laminar Energy Exchange -- 5.1.9 Flow and Heat Transfer Parameters -- 5.1.10 Laminar Heat Transfer in Tubes -- 5.1.11 Turbulent Momentum Exchange -- 5.1.12 Turbulent Energy Exchange -- 5.1.13 Buoyancy and Mixed Convection in Closed Cavities -- 5.1.14 Analogy of Heat and Momentum Transport, Solution Approaches for Local Turbulent Simulations -- 5.1.15 External Flows -- 5.1.16 Thermal-Hydraulics of Pipes and Engineering Correlations -- 5.2 Multiphase Momentum and Energy Exchange -- 5.2.1 Boiling Phenomenology-Homogeneous Boiling-Phase Diagrams -- 5.2.2 Boiling at Surfaces -- 5.2.3 Pool Boiling -- 5.2.4 Flow Boiling -- 5.2.5 Density Waves, Critical Mass Flux and Cavitation -- 5.2.6 Instabilities in Two-Phase Flows -- 5.2.7 Phase Change Heat Transfer -- 5.2.8 Condensation in Tubes and Pipes -- References -- 6 Stationary Solar Thermal Collectors -- 6.1 Introduction -- 6.1.1 Basic Structure and Operation of a Collector -- 6.1.2 Distinction Between Active and Passive Solar Thermal Energy -- 6.1.3 Impact of Concentration -- 6.1.4 Typical Operating Temperatures and Applications.6.2 Theoretical Description of Solar Collectors -- 6.2.1 Energy Balance -- 6.2.2 Efficiency Equation -- 6.2.3 Internal Flow and Temperature Distribution -- 6.3 Non-concentrating Collectors -- 6.3.1 Uncovered Collectors -- 6.3.2 Liquid Flat-Plate Collectors (FPC) -- 6.3.3 Air Collectors (Absorber Design, Ventilation Energy) -- 6.3.4 Vacuum Tube Collectors -- 6.4 Stationary Collectors with Low Concentration -- 6.4.1 CPC-Collectors -- 6.4.2 Radiation Enhancement with External Reflectors -- 6.5 Advanced Collector Topics -- 6.5.1 Bionic Collectors -- 6.5.2 Collectors Using High-Performance Concrete -- 6.5.3 Photovoltaic-Thermal Collectors (PVT) -- 6.5.4 Building Integration of Solar Thermal Collectors -- 6.6 Collector Performance Testing and Certification -- 6.6.1 Standardization (ISO, ASHRAE) -- 6.6.2 Certification -- 6.6.3 Conversion of Efficiency Equations -- 6.7 Collector Stagnation -- References -- 7 Concentrating Collectors -- 7.1 Classification of High-Temperature Concentrating Collectors -- 7.1.1 Concentration, Exergy, and Operating Temperatures -- 7.1.2 Radiation Density Distribution of the Sun and the Circum-Solar Radiation -- 7.2 Line Focusing Systems -- 7.2.1 Parabolic Trough Collectors -- 7.2.2 Linear Fresnel Collectors -- 7.3 Point Focusing Systems -- 7.3.1 Dish Collectors -- 7.3.2 Solar Towers-Central Receiver Systems -- 7.4 Comparison of Optical Performance of Parabolic Trough, Linear Fresnel, and Solar Towers -- References -- Part IISystems and Applications -- 8 Thermal Energy Storage -- 8.1 Introduction -- 8.2 Storage Characterisation -- 8.2.1 Physical Principles -- 8.2.2 Storage Capacity -- 8.2.3 Storage Duration -- 8.2.4 Storage Heat Losses -- 8.2.5 Economic Assessment -- 8.2.6 Storage Materials -- 8.2.7 TES System Configurations -- 8.2.8 Storage Charge and Discharge -- 8.2.9 Storage Efficiency -- 8.3 Evaluation Criteria.8.3.1 Technical Criteria -- 8.3.2 Environmental Criteria -- 8.3.3 Economic Criteria -- 8.3.4 Integration -- 8.4 Sensible Heat Storage (SHS) -- 8.4.1 Integration of SHS -- 8.4.2 Liquid Storage Media -- 8.4.3 Solid Storage Media -- 8.5 Latent Heat Storage (LHS) -- 8.5.1 Integration of LHS -- 8.5.2 Materials -- 8.5.3 Gas-Liquid Phase Change -- 8.5.4 Liquid-Solid Phase Change -- 8.5.5 Active and Passive Storage Designs -- 8.6 Chemical Storage -- 8.6.1 Catalytic Reactions -- 8.6.2 Thermal Dissociation Reactions -- 8.6.3 Metal Hydrides -- 8.6.4 Adsorption Processes -- 8.6.5 Absorption -- 8.6.6 Thermochemical Energy Storage Systems (TCES) -- 8.7 Commercial Water Storage Systems -- 8.7.1 Requirements -- 8.7.2 Water Tank Storage Types -- 8.7.3 Seasonal Storages in Heating Grids -- 8.8 Medium Temperature Storage for Industrial Process Heat Applications -- 8.9 High Temperature Storage -- 8.9.1 High-Temperature Storage Materials -- 8.9.2 Indirect 2-Tank Storage -- 8.9.3 Direct 2-Tank Storage -- 8.9.4 Steam Accumulators -- 8.9.5 Stratified Storage Tanks and Filling Materials -- 8.9.6 Solid Storage Options -- 8.9.7 Particle Storage -- References -- 9 Low Temperature Systems for Buildings -- 9.1 Introduction -- 9.1.1 Application and Demand -- 9.1.2 Interaction with Building Performance -- 9.1.3 Characterization of Systems -- 9.1.4 Fully Renewable Systems -- 9.2 Solar Thermal Liquid-Based Systems -- 9.2.1 Natural Circulation Systems -- 9.2.2 Forced Circulation Systems -- 9.2.3 Pressurized and Non-pressurized Systems -- 9.2.4 Drain-Back Systems -- 9.2.5 Low, Matched and High-Flow Solar Loop -- 9.2.6 Classification of Hydraulic System Concepts -- 9.3 Solar Thermal Air-Collector Systems -- 9.3.1 Closed Loop Systems -- 9.3.2 Open Loop Systems -- 9.3.3 Performance and Market of Solar Air Collector Fields -- 9.4 Solar District Heating (SDH) -- 9.4.1 Concepts.9.4.2 Storage.Platzer Werner487643Stieglitz Robert1735034MiAaPQMiAaPQMiAaPQBOOK9910847069003321Solar Thermal Energy Systems4154016UNINA