05165nam 2200625Ia 450 991084065520332120170816123216.01-280-52083-397866105208313-527-60599-13-527-60595-9(CKB)1000000000377380(EBL)482251(OCoLC)69157440(SSID)ssj0000158396(PQKBManifestationID)11155961(PQKBTitleCode)TC0000158396(PQKBWorkID)10144906(PQKB)10034391(MiAaPQ)EBC482251(PPN)167456334(EXLCZ)99100000000037738020041112d2004 uy 0engur|n|---|||||txtccrFrequency standards basics and applications /Fritz RiehleWeinheim Wiley-VCHc20041 online resource (542 p.)Description based upon print version of record.3-527-40230-6 Includes bibliographical references (p. [465]-520) and index.Frequency Standards Basics and Applications; Contents; Preface; 1 Introduction; 1.1 Features of Frequency Standards and Clocks; 1.2 Historical Perspective of Clocks and Frequency Standards; 1.2.1 Nature's Clocks; 1.2.2 Man-made Clocks and Frequency Standards; 2 Basics of Frequency Standards; 2.1 Mathematical Description of Oscillations; 2.1.1 Ideal and Real Harmonic Oscillators; 2.1.2 Amplitude Modulation; 2.1.3 Phase Modulation; 2.2 Oscillator with Feedback; 2.3 Frequency Stabilisation; 2.3.1 Model of a Servo Loop; 2.3.2 Generation of an Error Signal; 2.4 Electronic Servo Systems2.4.1 Components2.4.2 Example of an Electronic Servo System; 3 Characterisation of Amplitude and Frequency Noise; 3.1 Time-domain Description of Frequency Fluctuations; 3.1.1 Allan Variance; 3.1.2 Correlated Fluctuations; 3.2 Fourier-domain Description of Frequency Fluctuations; 3.3 Conversion from Fourier-frequency Domain to Time Domain; 3.4 From Fourier-frequency to Carrier-frequency Domain; 3.4.1 Power Spectrum of a Source with White Frequency Noise; 3.4.2 Spectrum of a Diode Laser; 3.4.3 Low-noise Spectrum of a Source with White Phase Noise; 3.5 Measurement Techniques3.5.1 Heterodyne Measurements of Frequency3.5.2 Self-heterodyning; 3.5.3 Aliasing; 3.6 Frequency Stabilization with a Noisy Signal; 3.6.1 Degradation of the Frequency Stability Due to Aliasing; 4 Macroscopic Frequency References; 4.1 Piezoelectric Crystal Frequency References; 4.1.1 Basic Properties of Piezoelectric Materials; 4.1.2 Mechanical Resonances; 4.1.3 Equivalent Circuit; 4.1.4 Stability and Accuracy of Quartz Oscillators; 4.2 Microwave Cavity Resonators; 4.2.1 Electromagnetic Wave Equations; 4.2.2 Electromagnetic Fields in Cylindrical Wave Guides; 4.2.3 Cylindrical Cavity Resonators4.2.4 Losses due to Finite Conductivity4.2.5 Dielectric Resonators; 4.3 Optical Resonators; 4.3.1 Reflection and Transmission at the Fabry-PeĢrot Interferometer; 4.3.2 Radial Modes; 4.3.3 Microsphere Resonators; 4.4 Stability of Resonators; 5 Atomic and Molecular Frequency References; 5.1 Energy Levels of Atoms; 5.1.1 Single-electron Atoms; 5.1.2 Multi-electron Systems; 5.2 Energy States of Molecules; 5.2.1 Ro-vibronic Structure; 5.2.2 Optical Transitions in Molecular Iodine; 5.2.3 Optical Transitions in Acetylene; 5.2.4 Other Molecular Absorbers5.3 Interaction of Simple Quantum Systems with Electromagnetic Radiation5.3.1 The Two-level System; 5.3.2 Optical Bloch Equations; 5.3.3 Three-level Systems; 5.4 Line Shifts and Line Broadening; 5.4.1 Interaction Time Broadening; 5.4.2 Doppler Effect and Recoil Effect; 5.4.3 Saturation Broadening; 5.4.4 Collisional Shift and Collisional Broadening; 5.4.5 Influence of External Fields; 5.4.6 Line Shifts and Uncertainty of a Frequency Standard; 6 Preparation and Interrogation of Atoms and Molecules; 6.1 Storage of Atoms and Molecules in a Cell; 6.2 Collimated Atomic and Molecular Beams6.3 CoolingOf all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standardsFrequency standardsStandards, EngineeringFrequency standards.Standards, Engineering.529.750971621.3815363Riehle Fritz1728553MiAaPQMiAaPQMiAaPQBOOK9910840655203321Frequency standards4137303UNINA