05216nam 2200625Ia 450 991084050250332120230617021421.01-280-55863-697866105586363-527-60636-X3-527-60165-1(CKB)1000000000019379(EBL)481512(SSID)ssj0000303234(PQKBManifestationID)11265541(PQKBTitleCode)TC0000303234(PQKBWorkID)10275290(PQKB)10187079(MiAaPQ)EBC481512(OCoLC)85820018(EXLCZ)99100000000001937920040218d2004 uy 0engur|n|---|||||txtccrMicrosystem engineering of lab-on-a-chip devices /[editors], Oliver Geschke, Henning Klank, Pieter TellemannWeinheim Wiley-VCHc20041 online resource (272 p.)Description based upon print version of record.3-527-30733-8 Includes bibliographical references and index.Microsystem Engineering of Lab-on-a-chip Devices; Contents; Preface; 1 Introduction; 1.1 Learning from the Experiences of Microelectronics; 1.2 The Advantages of Miniaturizing Systems for Chemical Analysis; 1.3 From Concept to μTAS; 1.4 References; 2 Clean Rooms; 3 Microfluidics - Theoretical Aspects; 3.1 Fluids and Flows; 3.2 Transport Processes; 3.2.1 Types of Transport; 3.2.1.1 Convection; 3.2.1.2 Migration; 3.2.1.3 Diffusion; 3.2.1.4 Dispersion; 3.3 System Design; 3.3.1 Laminar Flow and Diffusion in Action; 3.4 An Application: Biological Fluids; 3.5 References4 Microfluidics - Components4.1 Valves and Pumps; 4.1.1 Moving Liquids by Electroosmosis; 4.1.2 Mixers; 4.2 Injecting, Dosing, and Metering; 4.3 Temperature Measurement in Microfluidic Systems; 4.3.1 Microreactors; 4.3.2 Temperature Sensors for Microsystems; 4.3.3 Resistance Temperature Detectors; 4.3.3.1 Metals; 4.3.3.2 Nonmetals; 4.3.4 Thermocouples; 4.3.5 Semiconductor Junction Sensors; 4.3.6 Temperature Sensors Built on Other Principles; 4.3.7 Conclusion; 4.4 Optical Sensors; 4.4.1 Instrumentation; 4.4.2 Absorption Detection; 4.4.3 Evanescent-wave Sensing; 4.4.4 Fluorescence Detection4.5 Electrochemical Sensors4.6 References; 5 Simulations in Microfluidics; 5.1 Physical Aspects and Design; 5.2 Choosing Software and Hardware; 5.2.1 CFD-ACE+Version 6.6; 5.2.2 CoventorWareTM Version 2001.3; 5.2.3 Hardware; 5.2.4 The Core Elements of Typical CFD Software; 5.2.5 Pre-processors; 5.2.6 Solvers; 5.2.7 Post-processors; 5.3 Important Numerical Settings; 5.3.1 Boundary Conditions; 5.3.2 Solver Settings; 5.4 Errors and Uncertainties; 5.5 Interpretation and Evaluation of Simulations; 5.6 Example Simulations; 5.6.1 Fully-developed Flow in a Circular Capillary5.6.2 Movement of a Chemical Plug by Electroosmotic Flow in a Detection Cell5.6.3 Conclusions; 5.7 References; 6 Silicon and Cleanroom Processing; 6.1 Substrate Fabrication; 6.2 Optical Lithography; 6.2.1 Photolithography; 6.2.2 Mask Design; 6.2.3 Hints in Planning Fabrication Runs; 6.3 Deposition; 6.3.1 Fundamentals of Coatings; 6.3.2 Deposition Methods; 6.3.3 Materials; 6.3.4 Lift-off; 6.3.5 Silicides; 6.4 Etching Removal; 6.4.1 Wet-etching Fundamentals; 6.4.2 Etching with HF; 6.4.3 Isotropic Silicon Etch; 6.4.4 Orientation-dependent Silicon Etching6.4.5 Common Orientation-dependent Etchants6.4.6 Other Etchants; 6.4.7 Effects of Not Stirring a Transport-limited Etch; 6.5 Dry Etching; 6.5.1 Plasma Etching Fundamentals; 6.5.2 Plasma Etching Setups; 6.5.3 Etch Gases; 6.5.4 Laser-assisted Etching; 6.6 Heat Treatment; 6.6.1 Thermal Oxidation; 6.6.2 Diffusion; 6.6.3 Annealing; 6.6.4 Wafer Bonding; 6.7 References; 7 Glass Micromachining; 7.1 Wet Chemical Etching; 7.2 Reactive Ion Etching (RIE) of Glass; 7.3 Laser Patterning; 7.4 Powder Blasting; 7.5 Glass Bonding; 7.6 A Microfabrication Example; 7.7 References; 8 Polymer Micromachining8.1 Hot EmbossingWritten on a non-specialist level by an interdisciplinary team of chemists, biologists and engineers from one of Europe's leading centres for microsystem research, the Danish Mikroelektronik Centret (MIC), this is a concise practical introduction to the subject. As such, the book is the first to focus on analytical applications, providing life and analytical scientists, biotechnologists and pharmaceutists with an understanding of the principles behind the design and manufacture of chemical and biochemical microsystems. The text is backed by a chapter devoted to troubleshooting as well as a gMicroelectronicsMicrotechnologyMicroelectronics.Microtechnology.621.381Geschke Oliver504981Klank Henning504982Telleman Pieter504983MiAaPQMiAaPQMiAaPQBOOK9910840502503321Microsystem Engineering of Lab-on-a-chip Devices807259UNINA