01160nam--2200361---450-9900003502502033160035025USA010035025(ALEPH)000035025USA01003502520010306d1981----km-y0itay0103----baengDE||||||||001yyDistributed systems - Architecture and Implementationan advanced course<a cura di> D. W. Davies ..<et al.>edited by B.W. Lampson, M. Paul and H.J. SiegertBerlinSpringer Verlag1981XIII, 510 p.ill.24 cmLecture notes in computer science1052001Lecture notes in computer science105001-------2001001.644.04DAVIES,D.W.LAMPSON,B.W.ITsalbcISBD990000350250203316001 LNCS 10511027001 LNCS00101436BKSCIPATTY9020010306USA01173720020403USA011643PATRY9020040406USA011624Distributed systems878457UNISA02540nam 22004573a 450 991055763590332120230124202330.0https://doi.org/10.30819/5378(CKB)5400000000045055(ScCtBLL)a7e6ac82-a206-4fd4-a3e4-7c4cdacb3f5c(oapen)https://directory.doabooks.org/handle/20.500.12854/75074(oapen)doab77421(EXLCZ)99540000000004505520220504i20212022 uu enguru||||||||||txtrdacontentcrdamediacrrdacarrierOn the Stability of Objective StructuresMartin SteinbachVolume 38BerlinLogos Verlag Berlin2021[s.l.] :Logos Verlag Berlin,2021.1 online resource (174 p.)Augsburger Schriften zur Mathematik, Physik und Informatik9783832553784 3832553789 The main focus of this thesis is the discussion of stability of an objective (atomic) structure consisting of single atoms which interact via a potential. We define atomistic stability using a second derivative test. More precisely, atomistic stability is equivalent to a vanishing first derivative of the configurational energy (at the corresponding point) and the coerciveness of the second derivative of the configurational energy with respect to an appropriate semi-norm. Atomistic stability of a lattice is well understood, see, e.,g., [40]. The aim of this thesis is to generalize the theory to objective structures. In particular, we first investigate discrete subgroups of the Euclidean group, then define an appropriate seminorm and the atomistic stability for a given objective structure, and finally provide an efficient algorithm to check its atomistic stability. The algorithm particularly checks the validity of the Cauchy-Born rule for objective structures. To illustrate our results, we prove numerically the stability of a carbon nanotube by applying the algorithm.Augsburger Schriften zur Mathematik, Physik und InformatikScience / PhysicsbisacshMathematicsbisacshMathematicsScience / PhysicsMathematicsMathematics.Steinbach Martin1229891ScCtBLLScCtBLLBOOK9910557635903321On the Stability of Objective Structures2854906UNINA01674nam 22003853a 450 991083187680332120250204001556.097819471721731947172174(CKB)4950000000290246(ScCtBLL)2e8c829b-9108-4098-ab82-d51cbba578eb(EXLCZ)99495000000029024620250204i20152021 uu enguru||||||||||txtrdacontentcrdamediacrrdacarrierThe AP Physics CollectionGregg Wolfe, Erika Gasper, John Stoke[s.l.] :OpenStax,2015.1 online resource (1694 p.)The AP Physics Collection is a free, turnkey solution for your AP® Physics course, brought to you through a collaboration between OpenStax and Rice Online Learning. The integrated collection features the OpenStax College Physics for AP® Courses text, Concept Trailer videos, instructional videos, problem solution videos, and a correlation guide to help you align all of your free content.The College Physics for AP® Courses text is designed to engage students in their exploration of physics and help them apply these concepts to the Advanced Placement® test. This book is Learning List-approved for AP® Physics courses.Science / PhysicsbisacshScienceScience / PhysicsScience.Wolfe Gregg1788583Gasper ErikaStoke JohnScCtBLLScCtBLLBOOK9910831876803321The AP Physics Collection4323612UNINA