05106nam 2200457 450 991047894080332120210901203039.01-4963-8520-9(CKB)3710000001629629(MiAaPQ)EBC5568218(Au-PeEL)EBL5568218(OCoLC)1061111700(EXLCZ)99371000000162962920181122d2018 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPostoperative orthopaedic rehabilitation /editors, Andrew Green, Roman Hayda, Andrew C. HechtPhiladelphia :Wolters Kluwer :American Academy of Orthopaedic Surgeons,[2018]©20181 online resource (1,374 pages)1-4963-6028-1 Intro -- Title Page -- Copyright -- Contributors -- Foreword -- Preface -- Introduction -- Contents -- Section 1 Shoulder -- 1 Anatomic and Physiologic Basis for Postoperative Rehabilitation for the Shoulder -- 2 Patient-Related Outcome Measures for Shoulder Surgery and Rehabilitation -- 3 Acromioclavicular Separations -- 4 Capsular Releases for Shoulder Stiffness: Considerations for Treatment and Rehabilitation -- 5 Shoulder Instability Repairs -- 6 Open Anterior Glenohumeral Instability Repair -- 7 SLAP Repairs -- 8 Rotator Cuff Repairs -- 9 Shoulder Arthroplasty -- 10 Proximal Humerus Fractures -- 11 Scapular Dyskinesis -- Section 2 Elbow -- 12 Elbow Anatomy -- 13 Elbow Contracture Release -- 14 Lateral and Medial Epicondylitis -- 15 Current Concepts in Surgical Techniques and Postoperative Rehabilitation Strategies Following Ulnar Collateral Ligament Reconstruction of the Elbow -- 16 Elbow Rehabilitation After Lateral Collateral Ligament Reconstruction -- 17 Rehabilitation Following Distal Biceps Tendon Repair -- 18 Evaluation and Treatment of Ulnar Neuropathy at the Elbow -- 19 Rehabilitation After ORIF of Elbow Dislocations -- 20 Rehabilitation After Distal Humerus Fractures -- 21 ORIF for Olecranon Fractures: Simple Olecranon Fractures, Transolecranon Fracture-Dislocations and Posterior Monteggia Variant -- 22 ORIF and Radial Head Replacement for Radial Head Fractures -- 23 Total Elbow Arthroplasty -- Section 3 Hand and Wrist -- 24 Introduction to Hand and Wrist Anatomy -- 25 Dupuytren Disease -- 26 Thumb CMC Osteoarthritis: LRTI Procedure, Simple Trapeziectomy, CMC Arthrodesis -- 27 MP and PIP Joint Arthroplasty -- 28 Acute Flexor Tendon Injuries -- 29 Extensor Tendon Repairs -- 30 Tenolysis: Flexor and Extensor -- 31 Principles of Tendon Transfers -- 32 Distal Radius Fractures -- 33 Total Wrist Arthroplasty.34 Wrist Arthrodesis: Limited and Complete -- Section 4 Hip -- 35 Functional HIP Anatomy for Rehabilitation -- 36 Total Hip Arthroplasty -- 37 Hip Resurfacing -- 38 Total Hip Arthroplasty for Hip Fracture -- 39 Revision Total Hip Arthroplasty -- 40 Hip Arthroscopy: Femoroacetabular Impingement and Labral Tears -- 41 Periacetabular Osteotomy -- Section 5 Knee -- 42 Knee Anatomy -- 43 Total Knee Arthroplasty -- 44 Unicompartmental Knee Arthroplasty -- 45 Tibial and Femoral Osteotomy -- 46 Partial Meniscectomy/Chondroplasty -- 47 Meniscal Repair -- 48 ACL Reconstruction -- 49 Patellar Realignment -- 50 Patellar and Quadriceps Tendon Repairs -- 51 Collateral Ligament and Multiple Ligament Injury -- Section 6 Foot and Ankle -- 52 Introduction to Rehabilitation of the Foot and Ankle -- 53 Hallux Valgus -- 54 Flatfoot Surgery -- 55 Ankle and Hindfoot Fusions -- 56 Ankle Arthroplasty -- 57 Osteochondral Lesions of the Talus: Rehabilitation -- 58 Ankle Instability Surgery -- 59 Achilles Tendon Reconstruction -- 60 Calcaneus, Talus, Midfoot, and Lisfranc Fractures -- Section 7 Spine -- 61 Rehabilitation After Spine Surgery-Relevant Anatomy -- 62 Lumbar Laminectomy and Microdiscectomy -- 63 Lumbar Spine Fusion -- 64 Adult and Adolescent Scoliosis -- 65 Anterior Cervical Diskectomy and Fusion: Technique, Complications, and Rehabilitation -- 66 Posterior Cervical Laminectomy Fusion and Laminoplasty -- 67 Rehabilitation After the Compression Fracture -- Section 8 Trauma -- 68 General Principles of Fracture Treatment and Rehabilitation -- 69 Acetabulum -- 70 Rehabilitation After Pelvic Ring Injury -- 71 Proximal Femur Fractures: Neck, Intertrochanteric, and Subtrochanteric -- 72 Femur and Tibial Shaft Open and Closed Fractures -- 73 Postoperative Orthopaedic Rehabilitation of Distal Femur Fractures -- 74 Tibial Plateau -- 75 Ankle and Pilon Fractures.76 Humeral Shaft -- 77 Amputation -- Index.Orthopedic surgeryPatientsRehabilitationElectronic books.Orthopedic surgeryPatientsRehabilitation.617.47Green AndrewHayda Roman A.Hecht Andrew C.MiAaPQMiAaPQMiAaPQBOOK9910478940803321Postoperative orthopaedic rehabilitation2472363UNINA05280nam 2200661Ia 450 991083119950332120230721005746.01-282-16491-097866121649100-470-61100-60-470-39358-0(CKB)2550000000006378(EBL)479821(OCoLC)520990425(SSID)ssj0000340195(PQKBManifestationID)11269218(PQKBTitleCode)TC0000340195(PQKBWorkID)10388007(PQKB)11290185(MiAaPQ)EBC479821(EXLCZ)99255000000000637820071022d2008 uy 0engur|n|---|||||txtccrMaterials with rheological properties[electronic resource] calculation of structures /Constantin CristescuLondon ISTE ;Hoboken, NJ John Wiley20081 online resource (298 p.)ISTE ;v.15Description based upon print version of record.1-84821-012-4 Includes bibliographical references and index.Materials with Rheological Properties; Table of Contents; Chapter 1. Introduction; 1.1. Historical background; 1.2. Considering the plastic and rheological properties of materials in calculating and designing resistance structures for constructions; 1.3. The basis of the mathematical model for calculating resistance structures by taking into account the rheological properties of the materials; Chapter 2. The Rheological Behavior of Building Materials; 2.1. Preamble; 2.2. Structural steel for construction; 2.2.1. Structural steel for metal construction2.2.2. Reinforcing steel (non-prestressed)2.2.3. Reinforcements, steel wire and steel wire products for prestressed concrete; 2.3. Concrete; Chapter 3. Composite Resistance Structures with Elements Built from Materials Having Different Rheological Properties; 3.1. Mathematical model for calculating the behavior of composite resistance structures: introduction; 3.2. Mathematical model for calculating the behavior of composite resistance structures. The formulation considering creep; 3.2.1. The effects of the long-term actions and loads: overview3.2.1.1. Composite structures with discrete collaboration3.2.1.2. Composite structures with continuous collaboration; 3.2.1.3. Composite structures with complex composition; 3.2.2. The effect of repeated short-term variable load actions: overview; 3.3. Mathematical model for calculating the behavior of composite resistance structures. The formulation considering stress relaxation; 3.3.1. The effect of long-term actions and loads: overview; 3.3.1.1. Composite structures with discrete collaboration; 3.3.1.2. Composite structures with continuous collaboration3.3.1.3. Composite structures with complex composition3.3.2. The effect of repeated short-term variable actions and loads: overview; 3.4. Conceptual aspects of the mathematical model of resistance structure behavior according to the rheological properties of the materials from which they are made; Chapter 4. Applications on Resistance Structures for Constructions; 4.1. Correction matrix; 4.1.1. The displacement matrix of the end of a perfectly rigid body due to unit displacements successively applied to the other end of a rigid body4.1.2. The reaction matrix of the end of a perfectly rigid body due to unit forces successively applied to the other end of a rigid body4.2. Calculation of the composite resistance structures. Formulation according to the creep; 4.2.1. Preliminaries necessary to systematize the calculation of composite structures in the formulation according to the creep; 4.2.2. Composite structures with discrete collaboration; 4.2.3. Composite structures with continuous collaboration; 4.2.4. Composite structures with complex composition4.3. The calculation of composite resistance structures. Formulation according to the stress relaxationMaterials with Rheological Properties presents the evolution of the mathematical models used to calculate the resistance structures and the conditions which enable progress to be made in this field. The author presents equations describing the behavior of each possible type of resistance structure (with discrete collaboration, continuous collaboration and complex composition). These equations are then redefined in the particular concrete form for each type of structure, by using the notions and known parameters from the construction's statics. The mathematical models are then tested uISTEBuilding materialsMathematical modelsBuilding materialsAnalysisRheologyBuilding materialsMathematical models.Building materialsAnalysis.Rheology.624.1/8624.18Cristescu Constantin1669267MiAaPQMiAaPQMiAaPQBOOK9910831199503321Materials with rheological properties4030429UNINA