10458nam 2200517 450 991083108080332120230331092756.01-394-18822-61-394-18820-X(MiAaPQ)EBC7143497(Au-PeEL)EBL7143497(CKB)25401984900041(EXLCZ)992540198490004120230331d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFluid-structure interaction numerical simulation techniques for naval applications /coordinated by Jean-François Sigrist, Cédric LeblondHoboken, New Jersey :ISTE Ltd :John Wiley & Sons Inc,[2022]©20221 online resource (400 pages)Print version: Leblond, Cedric Fluid-Structure Interaction Newark : John Wiley & Sons, Incorporated,c2022 9781789450781 Includes bibliographical references and index.Cover -- Title Page -- Copyright Page -- Contents -- Foreword: Numerical Simulation: A Strategic Challenge for Our Industrial Sovereignty -- Preface: Fluid-Structure Interactions in Naval Engineering -- Acknowledgments -- Chapter 1. A Brief History of Naval Hydrodynamics -- 1.1. The emergence of a new science -- 1.2. Perfecting the theory -- 1.2.1. Fluids, viscosity and turbulence -- 1.2.2. Potential theories -- 1.2.3. Waves -- 1.3. Ship theory -- 1.3.1. Stability -- 1.3.2. Resistance to forward motion -- 1.3.3. Roll, pitch and seakeeping -- 1.3.4. Propeller and cavitation -- 1.4. The numerical revolution -- 1.5. References -- Chapter 2. Numerical Methods for Vibro-acoustics of Ships in the "Low frequency" Range -- 2.1. The acoustic signature of maritime platforms -- 2.2. Vibro-acoustic models -- 2.2.1. Vibro-acoustics without dissipative effects -- 2.2.2. Dissipation of energy in a fluid -- 2.2.3. Dissipation of energy in materials -- 2.3. Calculating the frequency response -- 2.3.1. Numerical model, vibro-acoustic equation -- 2.3.2. Direct and modal methods -- 2.4. Improving the predictive character of simulations -- 2.4.1. The medium- and high-frequency domains -- 2.4.2. Uncertainty propagation and parametric dependency -- 2.5. References -- Chapter 3. Hybrid Methods for the Vibro-acoustic Response of Submerged Structures -- 3.1. Noise and vibration of a submerged structure -- 3.1.1. Why vibro-acoustics? -- 3.1.2. From the real-world problem to the physical model -- 3.2. Solving the vibro-acoustic problem -- 3.2.1. Substructuring approach -- 3.2.2. Point admittance method -- 3.2.3. Condensed transfer function method -- 3.2.4. Examples of condensation functions -- 3.2.5. Spectral theory of cylindrical shells -- 3.2.6. FEM calculation for internal structures.3.3. Physical analysis of the vibro-acoustic behavior of a submerged cylindrical shell -- 3.3.1. The influence of heavy fluid -- 3.3.2. Vibration behavior of the cylindrical shell -- 3.3.3. The influence of stiffeners -- 3.3.4. Influence of non-axisymmetric internal structures -- 3.4. Conclusion -- 3.5. References -- Chapter 4. "Advanced" Methods for the Vibro-acoustic Response of Naval Structures -- 4.1. On reducing computing time -- 4.2. Parametric reduced-order models in the harmonic regime -- 4.2.1. Bibliographical elements. -- 4.2.2. Standard construction of the parametric reduced-order model -- 4.2.3. Constructing a goal-oriented parametric reduced-order model -- 4.3. Parametric reduced-order models in the time domain -- 4.3.1. Motivation -- 4.3.2. On the stability of full vibro-acoustic models -- 4.3.3. Construction of stable reduced-order models -- 4.3.4. Offline construction of the reduced-basis -- 4.3.5. Illustration of the temporal approach -- 4.4. Conclusion -- 4.5. References -- Chapter 5. Calculating Hydrodynamic Flows: LBM and POD Methods -- 5.1. Model reduction -- 5.2. Proper orthogonal decomposition -- 5.2.1. Calculation of the reduced basis POD -- 5.2.2. Using POD in fluid-structure interaction -- 5.2.3. Sensitivity to parameters and interpolation of POD bases -- 5.3. Lattice Boltzmann method -- 5.3.1. History -- 5.3.2. MRT/BGK -- 5.3.3. Real parameters/LBM parameters -- 5.4. LBM and FSI -- 5.4.1. Boundary conditions in the LBM -- 5.4.2. Immersed boundary method -- 5.5. Conclusion -- 5.6. References -- Chapter 6. Dynamic Behavior of Tube Bundles with Fluid-Structure Interaction -- 6.1. Introduction -- 6.1.1. Tube bundles in the nuclear industry -- 6.1.2. Tube bundles, industrial problems -- 6.1.3. Modeling FSI in exchangers -- 6.2. Physical models and equations -- 6.2.1. Fluid-structure interaction with Euler equations.6.2.2. Numerical methods for Euler equations with FSI -- 6.2.3. Homogenization in the case of tube bundles -- 6.2.4. Numerical methods for homogenization -- 6.2.5. Euler equations, Rayleigh damping -- 6.2.6. Homogenization, Rayleigh damping -- 6.2.7. Implementing the homogenization method -- 6.3. Validation and illustration of the homogenization method -- 6.3.1. Vibrational eigenmodes -- 6.3.2. Rayleigh damping: direct and homogenization methods -- 6.4. Homogenization methods for Navier-Stokes equations -- 6.5. Applications -- 6.5.1. Dynamic behavior of RNR-Na cores -- 6.5.2. Onboard steam generator -- 6.6. Conclusion -- 6.7. References -- Chapter 7. Calculating Turbulent Pressure Spectra -- 7.1. Vibrations caused by turbulent flow -- 7.2. Characteristics of the wall pressure spectrum -- 7.2.1. Turbulent boundary layer without a pressure gradient -- 7.2.2. Flow with a pressure gradient -- 7.3. Empirical models -- 7.3.1. Corcos model -- 7.3.2. Chase models -- 7.3.3. Smol'yakov model -- 7.3.4. Goody's model -- 7.3.5. Rozenberg model -- 7.3.6. Model comparison -- 7.4. Solving the Poisson equation for wall pressure fluctuations -- 7.4.1. Formulations for the TMS part of the wall pressure -- 7.4.2. Formulations for the TMS and TT parts of the wall pressure -- 7.5. Conclusion -- 7.6. References -- Chapter 8. Calculating Fluid-Structure Interactions Using Co-simulation Techniques -- 8.1. Introduction -- 8.2. The physics of fluid-structure interaction -- 8.2.1. Dimensionless numbers for the fluid flow -- 8.2.2. Dimensionless numbers for the motion of structures -- 8.2.3. Dimensionless numbers linked to fluid-structure coupling -- 8.2.4. Additional dimensionless numbers and the generic effects of a fluid on a structure -- 8.2.5. Summary of dimensionless numbers and fluid-structure coupling intensity.8.3. Mathematical formulation of the fluid-structure interaction -- 8.3.1. Mathematical formulation of the fluid problem -- 8.3.2. Mathematical formulation of the structural problem -- 8.3.3. Mathematical formulation of interface coupling conditions -- 8.4. Numerical methods in the dynamics of fluids and structures -- 8.4.1. Numerical methods in the dynamics of fluids -- 8.4.2. Numerical methods in structural dynamics -- 8.4.3. Arbitrary Lagrange-Euler (ALE) formulation and moving meshes -- 8.5. Numerical solution of the fluid-structure interaction -- 8.5.1. Software strategy -- 8.5.2. Time coupling methods in the case of partitioning approaches -- 8.5.3. Methods of space coupling -- 8.5.4. The added mass effect -- 8.6. Examples of applications to naval hydrodynamics -- 8.6.1. Foils in composite materials -- 8.6.2. Hydrodynamics of hulls -- 8.7. Conclusion: Which method for which physics? -- 8.8. References -- Chapter 9. The Seakeeping of Ships -- 9.1. Why predict ships' seakeeping ability? -- 9.1.1. Guaranteeing structural reliability -- 9.1.2. Guaranteeing a ship's safety at sea -- 9.1.3. Predicting operability domains -- 9.1.4. Improving operability -- 9.1.5. Getting to know the environment and how the ship disrupts it -- 9.1.6. The particular case of multibodies -- 9.1.7. Knowing average or low-frequency forces resulting from swell -- 9.2. Waves -- 9.2.1. Origin, nature and description of waves -- 9.2.2. Monochromatic swell -- 9.2.3. Irregular swell -- 9.2.4. Complete nonlinear wave modeling -- 9.2.5. Considering a ship's forward speed -- 9.3. The hydromechanical linear frequency solution -- 9.3.1. Hypotheses and general formulation -- 9.3.2. Response on regular swell -- 9.3.3. Response on irregular swell -- 9.4. Nonlinear time solution based on force models -- 9.4.1. Principles of the method -- 9.4.2. Results.9.4.3. Tools: uses and limitations -- 9.5. Complete solution of the Navier‒Stokes equations -- 9.5.1. Method -- 9.5.2. Applications to the problem of seakeeping -- 9.6. Conclusion -- 9.7. References -- Chapter 10. Modeling the Effects of Underwater Explosions on Submerged Structures -- 10.1. Underwater explosions -- 10.1.1. Characterizing the threat -- 10.1.2. Calculating the flow -- 10.1.3. Semi-analytical models for the response of submerged structures -- 10.2. Semi-analytical models for the motion of a rigid hull -- 10.2.1. Local motion of a rigid hull with or without equipment -- 10.2.2. Overall motion of a rigid hull with or without equipment -- 10.3. Semi-analytical models of the motion of a deformable hull -- 10.3.1. Shock signal on a deformable hull alone -- 10.3.2. Correction of the rigid body motion -- 10.3.3. Device rigidly mounted on the hull -- 10.3.4. Simplified representation of hull stiffeners -- 10.4. Notes on implementing models -- 10.5. Conclusion -- 10.6. References -- Chapter 11. Resistance of Composite Structures Under Extreme Hydrodynamic Loads -- 11.1. The behavior of composite materials -- 11.1.1. Orthotropic linear elastic behavior -- 11.1.2. Non-elastic behavior -- 11.1.3. Strain rate dependency -- 11.2. Underwater explosions -- 11.2.1. Categorizing phenomena -- 11.2.2. Analytical formulations and simple experiments -- 11.2.3. Numerical methods -- 11.3. Slamming: phenomenon and formulation -- 11.4. Conclusion -- 11.5. References -- List of Authors -- Index -- EULA.Fluid-structure interaction PipeFluid dynamicsPressure vesselsFluid-structure interaction .PipeFluid dynamics.Pressure vessels.624.171Leblond CédricSigrist Jean-FrançoisMiAaPQMiAaPQMiAaPQBOOK9910831080803321Fluid-Structure Interaction1504550UNINA