02742nam0 2200433 i 450 BVEE03333020170908093216.0iali x-o- tale lema (3) 1628 (A)fei20130518d1628 ||||0itac50 baitaitz01i xxxe z01nLettere annue di Ethiopia del 1624. 1625. e 1626. Scritte al M.R.P. Mutio Vitelleschi generale della Compagnia di GiesùIn Romaper l'herede di Bartolomeo Zannetti1628232, \2! p.8ºLe lettere sono di Padre Gaspard PaezSegn.: A-Oâ¸Pâ´Ï¹Insegna dei gesuiti sul front.1 v. (Legatura parzialmente divelta. - Timbro Coll. neap. soc. Jesu ex bibl. max. sul front. - Nota manosctitta sul front.: Dom. prof. Rom. S. J. - Mutilo del fascicolo X)IT-NA0079, SALA FARN.55. G 83Possessore: *Gesuiti <Roma>. Nota manoscritta sul front.IT-NA0079 SALA FARN. 55. G 83Possessore: *Gesuiti : Collegio Massimo <Napoli>. Timbro sul front.IT-NA0079 SALA FARN. 55. G 83ITRomaLO1L002924Paëz, Gaspard <1593-1635>BVEV072731GesuitiCFIV031212070281572Zanetti, Bartolomeo <2.> eredeSBNV019557750Gesuiti <Roma>NAPP000050390IT-NA0079 SALA FARN. 55. G 83Gesuiti : Collegio Massimo <Napoli>NAPP000190390IT-NA0079 SALA FARN. 55. G 83Societas IesuCFIV031215GesuitiCompagnia di GesùCFIV168473GesuitiZanetti, Bartolomeo erede <1621-1632>SBNV019564Zanetti, Bartolomeo <2.> eredeZannetti, Bartolomeo <2.> eredeSBNV019568Zanetti, Bartolomeo <2.> eredeITIT-NA007920130518IT-NA0079BVEE033330Biblioteca Nazionale Vittorio Emanuele III1 v. BNSALA FARN.55. G 83 BNA010014743245 H 1 v. (Legatura parzialmente divelta. - Timbro Coll. neap. soc. Jesu ex bibl. max. sul front. - Nota manosctitta sul front.: Dom. prof. Rom. S. J. - Mutilo del fascicolo X)C 2013051820130518Legatura parzialmente diveltaCaratteristiche materialiMutilo del fascicolo XImperfezioniTimbro Coll. neap. soc. Jesu ex bibl. max. sul front.Timbri conventuali e di ordini religiosiNota manosctitta sul front.: Dom. prof. Rom. S. J.Note, dedica, postille e note di possesso manoscritte BNLettere annue di Ethiopia del 1624. 1625. e 1626. Scritte al M.R.P. Mutio Vitelleschi generale della Compagnia di Giesù1481007UNISANNIO05358nam 22006374a 450 991083104910332120230106015838.01-280-27485-9978047002017297866102748570-470-02017-20-470-02018-0(CKB)111090529060232(EBL)219752(OCoLC)55519643(SSID)ssj0000125269(PQKBManifestationID)11132735(PQKBTitleCode)TC0000125269(PQKBWorkID)10026634(PQKB)10077961(MiAaPQ)EBC219752(EXLCZ)9911109052906023220031120d2004 uy 0engur|n|---|||||txtccrThe combined finite-discrete element method[electronic resource] /Ante MunjizaHoboken, NJ Wileyc20041 online resource (349 p.)Description based upon print version of record.0-470-84199-0 Includes bibliographical references (p. [319]-330) and index.The Combined Finite-Discrete Element Method; Contents; Preface; Acknowledgements; 1 Introduction; 1.1 General Formulation of Continuum Problems; 1.2 General Formulation of Discontinuum Problems; 1.3 A Typical Problem of Computational Mechanics of Discontinua; 1.4 Combined Continua-Discontinua Problems; 1.5 Transition from Continua to Discontinua; 1.6 The Combined Finite-Discrete Element Method; 1.7 Algorithmic and Computational Challenge of the Combined Finite-Discrete Element Method; 2 Processing of Contact Interaction in the Combined Finite Discrete Element Method; 2.1 Introduction2.2 The Penalty Function Method2.3 Potential Contact Force in 2D; 2.4 Discretisation of Contact Force in 2D; 2.5 Implementation Details for Discretised Contact Force in 2D; 2.6 Potential Contact Force in 3D; 2.6.1 Evaluation of contact force; 2.6.2 Computational aspects; 2.6.3 Physical interpretation of the penalty parameter; 2.6.4 Contact damping; 2.7 Alternative Implementation of the Potential Contact Force; 3 Contact Detection; 3.1 Introduction; 3.2 Direct Checking Contact Detection Algorithm; 3.2.1 Circular bounding box; 3.2.2 Square bounding object; 3.2.3 Complex bounding box3.3 Formulation of Contact Detection Problem for Bodies of Similar Size in 2D3.4 Binary Tree Based Contact Detection Algorithm for Discrete Elements of Similar Size; 3.5 Direct Mapping Algorithm for Discrete Elements of Similar Size; 3.6 Screening Contact Detection Algorithm for Discrete Elements of Similar Size; 3.7 Sorting Contact Detection Algorithm for Discrete Elements of a Similar Size; 3.8 Munjiza-NBS Contact Detection Algorithm in 2D; 3.8.1 Space decomposition; 3.8.2 Mapping of discrete elements onto cells; 3.8.3 Mapping of discrete elements onto rows and columns of cells3.8.4 Representation of mapping3.9 Selection of Contact Detection Algorithm; 3.10 Generalisation of Contact Detection Algorithms to 3D Space; 3.10.1 Direct checking contact detection algorithm; 3.10.2 Binary tree search; 3.10.3 Screening contact detection algorithm; 3.10.4 Direct mapping contact detection algorithm; 3.11 Generalisation of Munjiza-NBS Contact Detection Algorithm to Multidimensional Space; 3.12 Shape and Size Generalisation-Williams C-GRID Algorithm; 4 Deformability of Discrete Elements; 4.1 Deformation; 4.2 Deformation Gradient; 4.2.1 Frames of reference4.2.2 Transformation matrices4.3 Homogeneous Deformation; 4.4 Strain; 4.5 Stress; 4.5.1 Cauchy stress tensor; 4.5.2 First Piola-Kirchhoff stress tensor; 4.5.3 Second Piola-Kirchhoff stress tensor; 4.6 Constitutive Law; 4.7 Constant Strain Triangle Finite Element; 4.8 Constant Strain Tetrahedron Finite Element; 4.9 Numerical Demonstration of Finite Rotation Elasticity in the Combined Finite-Discrete Element Method; 5 Temporal Discretisation; 5.1 The Central Difference Time Integration Scheme; 5.1.1 Stability of the central difference time integration scheme5.2 Dynamics of Irregular Discrete Elements Subject to Finite Rotations in 3DThe combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology.The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body,Deformations (Mechanics)Mathematical modelsFinite element methodDeformations (Mechanics)Mathematical models.Finite element method.620.00151535620.1/123/015118620.1123015118Munjiza Ante1667853MiAaPQMiAaPQMiAaPQBOOK9910831049103321The combined finite-discrete element method4028009UNINA