04511nam 22005293 450 991083104080332120231014060240.01-119-13727-61-119-13729-21-119-13725-X(CKB)4330000000008831(MiAaPQ)EBC30783605(Au-PeEL)EBL30783605(OCoLC)1402816311(EXLCZ)99433000000000883120231014d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSource Separation in Physical-Chemical Sensing1st ed.Newark :John Wiley & Sons, Incorporated,2023.©2024.1 online resource (417 pages)IEEE Press Series1-119-13722-5 Intro -- Table of Contents -- Title Page -- Copyright -- About the Editors -- List of Contributors -- Foreword -- Preface -- Notation -- 1 Overview of Source Separation -- 1.1 Introduction -- 1.2 The Problem of Source Separation -- 1.3 Statistical Methods for Source Separation -- 1.4 Source Separation Problems in Physical-Chemical Sensing -- 1.5 Source Separation Methods for Chemical-Physical Sensing -- 1.6 Organization of the Book -- References -- Notes -- 2 Optimization -- 2.1 Introduction to Optimization Problems -- 2.2 Majorization-Minimization Approaches -- 2.3 Primal‐Dual Methods -- 2.4 Application to NMR Signal Restoration -- 2.5 Conclusion -- References -- Notes -- 3 Non‐negative Matrix Factorization -- 3.1 Introduction -- 3.2 Geometrical Interpretation of NMF and the Non‐negative Rank -- 3.3 Uniqueness and Admissible Solutions of NMF -- 3.4 Non‐negative Matrix Factorization Algorithms -- 3.5 Applications of NMF in Chemical Sensing. Two Examples of Reducing Admissible Solutions -- 3.6 Conclusions -- References -- 4 Bayesian Source Separation -- 4.1 Introduction -- 4.2 Overview of Bayesian Source Separation -- 4.3 Statistical Models for the Separation in the Linear Mixing -- 4.4 Statistical Models and Separation Algorithms for Nonlinear Mixtures -- 4.5 Some Practical Issues on Algorithm Implementation -- 4.6 Applications to Case Studies in Chemical Sensing -- 4.7 Conclusion -- Appendix 4.AImplementation of Function postsourcesrnd via Metropolis-Hasting Algorithm -- References -- Notes -- 5 Geometrical Methods - Illustration with Hyperspectral Unmixing -- 5.1 Introduction -- 5.2 Hyperspectral Sensing -- 5.3 Hyperspectral Mixing Models -- 5.4 Linear HU Problem Formulation -- 5.5 Dictionary‐Based Semiblind HU -- 5.6 Minimum Volume Simplex Estimation -- 5.7 Applications -- 5.8 Conclusions -- References -- Notes.6 Tensor Decompositions: Principles and Application to Food Sciences -- 6.1 Introduction -- 6.2 Tensor Decompositions -- 6.3 Constraints in Decompositions -- 6.4 Coupled Decompositions -- 6.5 Algorithms -- 6.6 Applications -- References -- Notes -- Index -- End User License Agreement."With the advent of more affordable, higher resolution or innovative data acquisition techniques, chemical analysis has been using progressively advanced signal and image processing tools. Indeed, both specialities (analytical chemistry and signal processing) share similar values of best practice in carrying out identifications and comprehensive characterizations, be they of chemical samples or of numerical data. Signal and image processing, for instance, often breaks down data into atoms, molecules, with specific decompositions and priors, as common in chemistry. Many problems in chemical engineering can be addressed with classical or advanced methods of signal and image processing, through topics such as chemical analysis leading to PARAFAC/tensor methods, hyper spectral imaging, ion-sensitive sensors, artificial noise, chromatography, mass spectrometry, TEP imaging, etc."--Provided by publisher.IEEE Press SeriesChemical detectorsBlind source separationChemical detectors.Blind source separation.681.25Jutten Christian1721772Duarte Leonardo Tomazeli1721773Moussaoui Said1721774MiAaPQMiAaPQMiAaPQBOOK9910831040803321Source Separation in Physical-Chemical Sensing4121604UNINA