02013nam 2200373 450 991055786690332120230512212152.010.1515/9783110568509(CKB)4330000001456390(NjHacI)994330000001456390(EXLCZ)99433000000145639020230512d2018 uy 0itaur|||||||||||txtrdacontentcrdamediacrrdacarrierFabellae Frammenti di favole latine e bilingui latino-greche di tradizione diretta (III-IV d.C.) /Maria Chiara ScappaticcioBerlin :De Gruyter,2018.1 online resource (263 pages)Untersuchungen zur antiken Literatur und Geschichte3-11-056852-7 Lying between the grammarians' and rhetors' domains, Aesop's fables were known and employed in the Western and Eastern educational environments mainly for their intrinsically moral essence. Once having explored the literary and grammatical texts concerning the educational role of fables, the book is focussed on the direct witnesses of Latin and bilingual Latin-Greek fables (III-IV AD) coming from the Eastern school environments, of which a new annotated edition is given. A relevant contribution is offered both: 1. to the complex and (almost) anonymous tradition of fables between the ancient Greek Aesop and the Medieval Latin Romulus, and through Phaedrus, Avian and the Hermeneumata Pseudodositheana; 2. and to the role fables played in the second-language (L2) acquisition and in teaching/learning Latin as L2 between East and West.Untersuchungen zur antiken Literatur und Geschichte.Greek prose literatureGreek prose literature.488.6421Scappaticcio Maria Chiara477793NjHacINjHaclBOOK9910557866903321"Fabellae"1938018UNINA06269nam 2200517 450 991083089560332120231110233918.01-119-90835-31-119-90816-71-119-90817-5(MiAaPQ)EBC7153094(Au-PeEL)EBL7153094(CKB)25610142600041(EXLCZ)992561014260004120230416d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierIntroduction to modern analysis of electric machines and drives /Paul C. Krause, Thomas C. KrauseHoboken, New Jersey :John Wiley & Sons, Incorporated,[2023]©20231 online resource (343 pages)IEEE Press Series on Power and Energy Systems Print version: Krause, Thomas C. Introduction to Modern Analysis of Electric Machines and Drives Newark : John Wiley & Sons, Incorporated,c2022 9781119908159 Includes bibliographical references and index.Cover -- Title Page -- Copyright Page -- Contents -- Author Biography -- Foreword -- Preface -- Chapter 1 Common Analysis Tools -- 1.1 Introduction -- 1.2 Steady-State Phasor Calculations -- 1.2.1 Power and Reactive Power -- 1.3 Stationary Magnetically Linear Systems -- 1.3.1 Two-Winding Transformer -- 1.4 Winding Configurations -- 1.5 Two- and Three-Phase Stators -- 1.5.1 Two-Phase Stator -- 1.5.2 Three-Phase Stator -- 1.5.3 Line-to-Line Voltage -- 1.6 Problems -- Reference -- Chapter 2 Analysis of the Symmetrical Stator -- 2.1 Introduction -- 2.2 Tesla's Rotating Magnetic Field -- 2.2.1 Two-Pole Two-Phase Stator -- 2.2.2 Two-Pole Three-Phase Stator -- 2.3 Reference Frame Theory -- 2.3.1 Two-Phase Transformation -- 2.3.2 Three-Phase Transformation -- 2.4 Stator Voltage and Flux Linkage Equations in the Arbitrary Reference Frame and the Instantaneous Phasor -- 2.4.1 Two-Phase Stator -- 2.4.2 Three-Phase Stator -- 2.4.3 Instantaneous and Steady-State Phasors -- 2.5 Problems -- References -- Chapter 3 Symmetrical Induction Machine -- 3.1 Introduction -- 3.2 Symmetrical Machines -- 3.3 Symmetrical Two-Pole Rotor Windings -- 3.3.1 Two-Phase Rotor Windings -- 3.3.2 Three-Phase Rotor Windings -- 3.4 Substitute Variables For Symmetrical Rotating Circuits and Equivalent Circuit -- 3.4.1 Two-Phase Machine -- 3.4.2 Three-Phase Machine -- 3.5 Electromagnetic Force and Torque -- 3.6 P-Pole Machines -- 3.7 Free Acceleration Variables Viewed from Different Reference Frames -- 3.8 Steady-State Equivalent Circuit -- 3.9 Problems -- References -- Chapter 4 Synchronous Machines -- 4.1 Introduction -- 4.2 Analysis of the Permanent-Magnet ac Motor -- 4.2.1 Torque -- 4.2.2 Unequal Direct- and Quadrature-Axis Inductances -- 4.2.3 Three-Phase Machine -- 4.3 Windings of the Synchronous Machine -- 4.4 Equivalent Circuit - Voltage and Torque Equations -- 4.4.1 Torque.4.4.2 Rotor Angle -- 4.5 Dynamic and Steady-State Performances -- 4.6 Analysis of Steady-State Operation -- 4.7 Transient Stability -- 4.7.1 Three-Phase Fault -- 4.8 Problems -- Reference -- Chapter 5 Direct Current Machine and Drive -- 5.1 Introduction -- 5.2 Commutation -- 5.3 Voltage and Torque Equations -- 5.4 Permanent-Magnet dc Machine -- 5.5 DC Drive -- 5.5.1 Average-Value Time-Domain Block Diagram -- 5.5.2 Torque Control -- 5.6 Problems -- Reference -- Chapter 6 Brushless dc and Field-Oriented Drives -- 6.1 Introduction -- 6.2 The Brushless dc Drive Configuration -- 6.3 Normal Mode of Brushless dc Drive Operation -- 6.4 Other Modes of Brushless dc Drive Operation -- 6.4.1 Maximum-Torque Per Volt Operation of a Brushless dc Drive (ϕv = ϕvMT V ) -- 6.4.2 Maximum-Torque Per Ampere Operation of a Brushless dc Drive (ϕv = ϕvMT A) -- 6.4.3 Torque Control -- 6.5 Field-Oriented Induction Motor Drive -- 6.6 Problems -- References -- Chapter 7 Single-Phase Induction Motors -- 7.1 Introduction -- 7.2 Symmetrical Components -- 7.3 Analysis of Unbalanced Modes of Operation -- 7.3.1 Unbalanced Stator Voltages -- 7.3.2 Unbalanced Stator Impedances -- 7.3.3 Open-Circuited Stator Phase -- 7.4 Single-Phase and Capacitor-Start Induction Motors -- 7.4.1 Single-Phase Induction Motor -- 7.4.2 Capacitor-Start Induction Motor -- 7.5 Dynamic and Steady-State Performance of a Capacitor-Start Single-Phase Induction Motor -- 7.6 Split-Phase Induction Motor -- 7.7 Problems -- References -- Chapter 8 Stepper Motors -- 8.1 Introduction -- 8.2 Basic Configurations of Multistack Variable-Reluctance Stepper Motors -- 8.3 Equations for Multistack Variable-Reluctance Stepper Motors -- 8.4 Operating Characteristics of Multistack Variable Reluctance Stepper Motors -- 8.5 Single-Stack Variable-Reluctance Stepper Motors -- 8.6 Basic Configuration of Permanent-Magnet Stepper Motors.8.7 Equations for Permanent-Magnet Stepper Motors -- 8.8 Problems -- References -- Appendix A Abbreviations, Constants, Conversions, and Identities -- Epilogue -- Index -- EULA."The equations for the analysis of ac machines are established from Tesla's rotating magnetic field which contains the transformation for symmetrical two- and three-phase variables to the arbitrary reference frame. This allows the voltage and flux linkage equations to be expressed in any frame of reference by simply assigning the speed of the reference frame. The transformation is nothing more than a means of expressing the variables (voltages and currents) that portray Tesla's rotating magnetic field from a given reference frame. This establishes a meaning to the transformation and makes it easier to understand"--Provided by publisher.IEEE Press Series on Power and Energy Systems Electric machineryElectric drivingElectric machinery.Electric driving.343.730786Krause Paul C.770618Krause Thomas C.MiAaPQMiAaPQMiAaPQBOOK9910830895603321Introduction to modern analysis of electric machines and drives3997491UNINA11625nam 22006613 450 991098566990332120240407090434.097807503450020750345004(MiAaPQ)EBC31253117(Au-PeEL)EBL31253117(CKB)31356165400041(Exl-AI)31253117(OCoLC)1429738475(EXLCZ)993135616540004120240407d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPlasma Modeling (Second Edition) Methods and Applications2nd ed.Bristol :Institute of Physics Publishing,2022.©2022.1 online resource (725 pages)IOP Series in Plasma Physics Series9780750335607 0750335602 Intro -- Preface -- Acknowledgements -- Editor biographies -- Gianpiero Colonna -- Antonio D'Angola -- List of contributors -- Chapter 1 Boltzmann and Vlasov equations in plasma physics -- 1.1 Fundamentals -- 1.1.1 The convection operator -- 1.1.2 The collisional operator -- 1.1.3 Boltzmann's H-theorem -- 1.1.4 Vlasov equation -- 1.2 Cross sections -- 1.3 Solution of the Boltzmann equation -- 1.4 Plasma modeling numerical codes -- References -- Chapter 2 Two-term Boltzmann Equation -- 2.1 Two-term distribution -- 2.2 Differential equations -- 2.3 Quasi-stationary approximation -- 2.4 Rapidly varying oscillating field -- 2.4.1 Case B = 0 -- 2.4.2 Generalization to independent frequencies -- 2.4.3 Matrices for single frequency -- 2.4.4 Some considerations -- 2.4.5 Power absorbed by electrons -- 2.4.6 Mean magnetic dipole moment -- 2.4.7 Perpendicular energy equation -- 2.5 Electrons in flow -- 2.6 Electron energy distribution -- 2.6.1 Current anisotropy -- 2.6.2 Transport properties -- 2.6.3 Nozzle flow -- 2.7 The collision integral -- 2.7.1 Elastic collisions with heavy species -- 2.7.2 Electron-electron collisions -- 2.7.3 Inelastic and superelastic collisions -- 2.7.4 Chemical processes -- 2.8 The numerical solution -- 2.9 Appendix: angle integrals -- 2.9.1 Type (a) -- 2.9.2 Type (b) -- References -- Chapter 3 Multiterm and non-local electron Boltzmann equation -- 3.1 Introduction -- 3.2 Basic relations -- 3.2.1 Boltzmann equation of the electrons -- 3.2.2 Expansion of the velocity distribution -- 3.2.3 Macroscopic balances -- 3.3 Numerical treatment -- 3.3.1 Solution method for time-dependent conditions -- 3.3.2 Multiterm solution for space-dependent plasmas -- 3.4 Concluding remarks -- References -- Chapter 4 Particle-based simulation of plasmas -- 4.1 Types of interacting systems -- 4.1.1 Strength of interaction.4.2 Computer simulation of interacting systems -- 4.3 Particle-in-cell method -- 4.3.1 Mathematical formulation of PIC -- 4.3.2 Selection of the particle shapes -- 4.3.3 Derivation of the equations of motion -- 4.4 Coupling with the field equations: spatial discretization on a grid -- 4.5 Temporal discretization of the particle methods -- 4.5.1 Explicit temporal discretization of the particle equations -- 4.5.2 Explicit PIC cycle -- 4.5.3 Electrostatic explicit methods -- 4.5.4 Stability of the explicit PIC method -- 4.6 Implicit particle methods -- 4.7 Annotated python code -- 4.7.1 Initialization -- 4.7.2 Particle initialization -- 4.7.3 Grid initialization -- 4.7.4 Main cycle -- References -- Chapter 5 The ergodic method: plasma dynamics through a sequence of equilibrium states -- 5.1 Introduction to the ergodic method -- 5.2 Expansion of spherical nanoplasmas -- 5.3 Electron dynamics in a Penning trap for technology applications -- References -- Chapter 6 Fluid models for collisionless magnetic reconnection -- 6.1 Two-fluid model -- 6.1.1 Normalization -- 6.2 Collisionless plasmas -- 6.3 Linear dispersion relation -- 6.3.1 The ρs→0 case -- 6.3.2 The ρs⩾de case -- 6.4 Hamiltonian formulation -- 6.5 Numerical simulations of collisionless reconnection -- 6.5.1 The ρs→0 limit -- 6.6 Shear flow effects on the reconnecting instability -- References -- Chapter 7 Magnetohydrodynamics equations -- 7.1 MHD models -- 7.1.1 Model foundation -- 7.1.2 MHD approximation -- 7.1.3 Non-equilibrium conditions -- 7.1.4 Magnetoquasistatics -- 7.1.5 General model -- 7.1.6 Ideal MHD -- 7.1.7 Low magnetic Reynolds number model -- 7.2 Numerical model -- 7.3 Applications -- References -- Chapter 8 Drift-diffusion models and methods -- 8.1 Drift-diffusion transport equations -- 8.1.1 Drift-diffusion model in the absence of magnetic field.8.1.2 Boundary conditions at solid surfaces -- 8.2 Stiffness and why it needs to be overcome -- 8.3 Block-implicit schemes -- 8.4 Why the drift-diffusion system is particularly stiff -- 8.5 Overcoming the drift-diffusion stiffness -- 8.5.1 Ohm-based potential equation -- 8.5.2 Modified ion transport equation -- 8.5.3 Ambipolar form of the electron transport equation -- 8.6 Generalized recast of the drift-diffusion system -- References -- Chapter 9 Self-consistent kinetics -- 9.1 The state-to-state approach -- 9.2 Collisional-radiative model -- 9.3 Vibrational kinetics -- 9.4 The self-consistent approach -- 9.5 High enthalpy ionized flows -- 9.6 The self-consistent approach for CO2 plasmas -- 9.6.1 CO2 vibrational levels -- 9.6.2 CO2 state-to-state kinetics -- 9.6.3 Results -- References -- Chapter 10 Hypersonic flows with detailed state-to-state kinetics using a GPU cluster -- 10.1 Physical model -- 10.1.1 Governing equations -- 10.1.2 Transport properties -- 10.1.3 Multi-temperature Park model -- 10.1.4 State-to-state model -- 10.2 Numerical scheme -- 10.2.1 Finite-volume approach -- 10.2.2 Convective fluxes discretization -- 10.2.3 Diffusive fluxes discretization -- 10.2.4 Time integration -- 10.2.5 Evaluation of source terms: splitting approach -- 10.3 GPU clustering -- 10.3.1 CUDA environment -- 10.3.2 Kernel development -- 10.3.3 MPI-CUDA environment -- 10.3.4 Kernel examples -- 10.4 Results -- 10.4.1 High enthalpy flow over a double-wedge -- 10.4.2 Scalability performance -- References -- Chapter 11 Hybrid models -- 11.1 Basic assumptions and governing equations -- 11.2 Numerical implementation -- 11.2.1 Time-advance algorithm -- 11.2.2 Initialization and boundary conditions -- 11.3 Applications -- 11.3.1 Electrostatic case: plasma plume expansion and Langmuir probes -- 11.3.2 Magnetostatic case: E × B field devices.11.3.3 Electromagnetic case: fusion and space plasmas -- 11.3.4 Spatially hybrid simulation: streamers and laser-plasma interaction -- References -- Chapter 12 On the coupling of vibrational and electronic kinetics with the electron energy distribution functions: past and present -- 12.1 H2 plasma -- 12.2 N2 plasma -- 12.3 O2 plasma -- 12.4 CO plasma -- 12.5 Nozzle flows -- 12.6 Conclusions -- References -- Chapter 13 Atmospheric pressure plasmas operating in high frequency fields -- 13.1 Atmospheric pressure plasmas modelling in high frequency fields -- 13.1.1 Transport properties of electrons in non-magnetized and partially ionized gases -- 13.1.2 Treatment of ions and neutral species -- 13.1.3 Macroscopic equations for the weakly ionized gas flow -- 13.1.4 Electrodynamics -- 13.2 Application-contraction of an argon discharge -- 13.3 Conclusion -- References -- Chapter 14 Direct current microarcs at atmospheric pressure -- 14.1 Introduction -- 14.2 Unified fluid modelling of microarcs -- 14.3 Transport quantities, thermodynamic and transport properties -- 14.4 Plasma chemistry -- 14.5 Boundary conditions -- 14.6 Realization and selected results -- 14.7 Conclusion -- References -- Chapter 15 Multiscale phenomenona in a self-organized plasma jet -- 15.1 Introduction -- 15.2 Setup and discharge behaviour -- 15.3 Model equations -- 15.3.1 Gas dynamics -- 15.3.2 Plasma description -- 15.3.3 Argon plasma chemistry -- 15.3.4 Solution method -- 15.4 Plasma jet models -- 15.4.1 Single filament model -- 15.4.2 Period-averaged plasma jet model -- 15.5 Concluding remarks -- References -- Chapter 16 High-enthalpy radiating flows in aerophysics -- 16.1 Fluid dynamic model -- 16.2 Radiative gas dynamics of re-entry space vehicles -- 16.2.1 Fire-II -- 16.2.2 Stardust -- 16.2.3 RAM-C-II -- 16.2.4 ORION -- 16.2.5 PTV -- 16.2.6 MSL -- 16.3 Conclusions -- References.Chapter 17 Simulating plasma aerodynamics -- 17.1 Background and levels of modeling -- 17.2 Flow control via plasma heating -- 17.3 Flow control via magnetic forces -- 17.4 Flow control via electrical forces -- 17.5 Summary and paths forward -- References -- Chapter 18 Dust-plasma interaction: a review of dust charging theory and simulation -- 18.1 Introduction -- 18.2 Basics of dust-plasma interaction -- 18.2.1 Repelled species (qαϕd& -- #62 -- 0) -- 18.2.2 Attracted species (qαϕd< -- 0) -- 18.2.3 Summary of OML theory -- 18.2.4 Some important considerations -- 18.3 A note on the numerical solution of dust-plasma interaction problems -- 18.4 Dust electron emission -- 18.4.1 The OML approach -- 18.4.2 Transition from negatively- to positively-charged states -- 18.5 Final remarks -- References -- Chapter 19 Magnetic confinement for thermonuclear energy production -- 19.1 Ideal magnetostatic equilibrium -- 19.1.1 First principles and topological properties -- 19.1.2 General representations of the magnetic field -- 19.1.3 Specific curvilinear flux coordinate system -- 19.2 Grad-Shafranov equation -- 19.2.1 Figures of merit of the tokamak equilibria -- 19.2.2 Large aspect ratio limit -- 19.2.3 Plasma confined within a conducting shell -- 19.2.4 Radial and vertical equilibrium -- 19.2.5 Shape of plasma meridian cross-section -- 19.2.6 Shape and boundary conditions -- 19.3 Direct and inverse problems -- 19.3.1 Tokamak equilibrium with flow -- 19.4 Principal technical elements of a tokamak -- 19.5 Plasma formation -- 19.5.1 Poynting theorem -- 19.5.2 Start-up and current ramp-up -- 19.5.3 Toroidal coils -- 19.6 Similarity principles applied to tokamaks -- References -- Chapter 20 Verification and validation in plasma physics -- 20.1 Introduction -- 20.2 The validation and verification methodology -- 20.2.1 Code verification methodology.20.2.2 Solution verification methodology.Plasma Modeling: Methods and applications presents and discusses the different approaches that can be adopted for plasma modeling. In this updated second edition, an extensive new part is added that discusses methods to calculate data needed in plasma modeling, such as thermodynamic and transport properties, state specific rate coefficients in heavy particle collisions and electron impact cross sections.IOP Series in Plasma Physics SeriesKinetic theory of matterGenerated by AINuclear fusionGenerated by AIKinetic theory of matterNuclear fusionColonna Gianpiero445779D'Angola Antonio445780Loffhagen Detlef1791929Lapenta Giovanni1791930Coppa Gianni1791931Silva Luis1757474Peano Fabio1791932Peinetti Federico1791933Grasso Daniela1791934Borgogno Dario1791935MiAaPQMiAaPQMiAaPQBOOK9910985669903321Plasma Modeling (Second Edition)4329724UNINA