10781nam 2200505 450 991083086880332120230630000948.03-527-82508-83-527-82509-6(CKB)4100000011798910(MiAaPQ)EBC6516143(Au-PeEL)EBL6516143(OCoLC)1243544175(EXLCZ)99410000001179891020211009d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSolar-to-chemical conversion photocatalytic and photoelectrochemcial processes /edited by Hongqi SunWeinheim, Germany :Wiley-VCH GmbH,[2021]©20211 online resource (476 pages) illustrations3-527-34718-6 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Introduction: A Delicate Collection of Advances in Solar‐to‐Chemical Conversions -- Chapter 2 Artificial Photosynthesis and Solar Fuels -- 2.1 Introduction of Solar Fuels -- 2.2 Photosynthesis -- 2.2.1 Natural Photosynthesis -- 2.2.2 Artificial Photosynthesis -- 2.3 Principles of Photocatalysis -- 2.4 Products of Artificial Photosynthesis -- 2.4.1 Hydrocarbons -- 2.4.1.1 Methane (CH4) -- 2.4.1.2 Methanol (CH3OH) -- 2.4.1.3 Formaldehyde (HCHO) -- 2.4.1.4 Formic Acid (HCOOH) -- 2.4.1.5 C2 Hydrocarbons -- 2.4.1.6 Other Hydrocarbons -- 2.4.2 Carbon Monoxide (CO) -- 2.4.3 Dioxygen (O2) -- 2.5 Perspective -- Acknowledgments -- References -- Chapter 3 Natural and Artificial Photosynthesis -- 3.1 Introduction -- 3.2 Overview of Natural Photosynthesis -- 3.3 Light Harvesting and Excitation Energy Transfer -- 3.4 Charge Separation and Electron Transfer -- 3.5 Water Oxidation -- 3.6 Carbon Fixation -- 3.7 Conclusions -- References -- Chapter 4 Photocatalytic Hydrogen Evolution -- 4.1 Introduction -- 4.2 Fundamentals of Photocatalytic H2 Evolution -- 4.3 Photocatalytic H2 Evolution Under UV Light -- 4.3.1 Titanium Dioxide (TiO2)‐Based Semiconductors -- 4.3.2 Other Types of UV‐Responsive Photocatalysts -- 4.4 Photocatalytic H2 Evolution Under Visible Light -- 4.4.1 Carbon Nitride (C3N4)‐Based Semiconductor -- 4.4.2 Other Types of Visible‐Light‐Responsive Photocatalysts -- 4.5 Photocatalytic H2 Evolution Under Near‐Infrared Light -- 4.6 Roles of Sacrificial Reagents and Reaction Pathways -- 4.7 Summary and Outlook -- References -- Chapter 5 Photoelectrochemical Hydrogen Evolution -- 5.1 Background of Photoelectrocatalytic Water Splitting -- 5.2 Mechanism of Charge Separation and Transfer -- 5.3 Strategy for Improving Charge Transfer -- 5.3.1 Improving the Charge Transfer in Continuous Film.5.3.2 Improving the Charge Transfer in Particulate Photoelectrodes -- 5.4 Strategy for Improving Electron-Hole Separation -- 5.4.1 Heterojunction Formation -- 5.4.2 Crystal Facet Control -- 5.4.3 Surface Passivation -- 5.5 Surface Cocatalyst Design -- 5.6 Unbiased PEC Water Splitting -- 5.7 Conclusion and Perspective -- References -- Chapter 6 Photocatalytic Oxygen Evolution -- 6.1 Introduction -- 6.1.1 Configuration of Photocatalytic Water Oxidation -- 6.1.2 Mechanism, Thermodynamics, and Kinetics Toward Efficient Oxygen Evolution -- 6.2 Homogeneous Photocatalytic Water Oxidation -- 6.2.1 Molecular Complexes and Polyoxometalates -- 6.2.2 Mechanism Details and the Stability -- 6.3 Heterogeneous Photocatalytic Water Oxidation -- 6.3.1 Unique Properties of Nanosized Semiconductor System -- 6.3.1.1 Quantum Confinement -- 6.3.1.2 Localized Surface Plasmon Resonance (LSPR) -- 6.3.1.3 Surface Area and Exposed Facet‐Enhanced Charge Transfer -- 6.3.2 Zero‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.2.1 0D Metal Complexes and Nanoclusters -- 6.3.2.2 Metal Oxide Quantum Dots and Nanocrystals -- 6.3.3 One‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.4 Two‐Dimensional Semiconductor Materials for Photocatalytic Water Oxidation -- 6.3.4.1 2D Metal Oxide Nanosheets for Photocatalytic Water Oxidation -- 6.3.4.2 Layered Double Hydroxide (LDH) Nanosheets for Photocatalytic Water Oxidation -- 6.3.4.3 Metal‐Based Oxyhalide Semiconductors for Photocatalytic Water Oxidation -- 6.3.5 LD Semiconductor‐Based Hybrids for Photocatalytic Oxygen Evolution -- 6.3.5.1 1D‐Based (0D/1D and 1D/1D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation -- 6.3.5.2 2D‐Based (2D/2D) Semiconductor Hybrids for Enhanced Photocatalytic Water Oxidation -- 6.3.5.3 Metal‐Free‐Based Semiconductors for Water Oxidation.6.4 Catalytic Active Site-Catalysis Correlation in LD Semiconductors -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Photoelectrochemical Oxygen Evolution -- 7.1 Introduction -- 7.2 Honda-Fujishima Effect -- 7.3 Factors Affecting the Photoanodic Current -- 7.4 Electrode Potentials at Different pH -- 7.5 Evaluation of PEC Performance -- 7.6 Flat Band Potential and Photocurrent Onset Potential -- 7.7 Selection of Materials -- 7.8 Enhancement of PEC Properties -- 7.8.1 Nanostructuring and Morphology Control -- 7.8.2 Donor Doping -- 7.8.3 Modification of Photoanode Surface -- 7.8.4 Electron‐Conductive Materials -- 7.9 PEC Device for Water Splitting -- 7.10 Conclusions and Outlook -- References -- Chapter 8 Photocatalytic and Photoelectrochemical Overall Water Splitting -- 8.1 Introduction -- 8.2 Photocatalytic Overall Water Splitting -- 8.2.1 Principles and Mechanism -- 8.2.2 Key Performance Indicators -- 8.2.3 Materials for One‐Step Photoexcitation Toward Overall Water Splitting -- 8.2.3.1 Semiconductors -- 8.2.3.2 Incorporation of Cocatalysts -- 8.2.3.3 Plasmonic Nanostructures -- 8.2.4 Hybrid Systems for Two‐Step Photoexcitation Toward Overall Water Splitting -- 8.2.4.1 Z‐Schemes -- 8.3 Photoelectrochemical Overall Water Splitting -- 8.3.1 Principles and Mechanism -- 8.3.2 Key Performance Indicators -- 8.3.3 Materials Design -- 8.3.3.1 Photoanode Materials -- 8.3.3.2 Photocathode Materials -- 8.3.4 Unassisted Photoelectrochemical Overall Water Splitting -- 8.3.4.1 Photoanode-Photocathode Tandem Cells -- 8.3.4.2 Photovoltaic-Photoelectrode Devices -- 8.4 Concluding Remarks and Outlook -- Acknowledgments -- References -- Chapter 9 Photocatalytic CO2 Reduction -- 9.1 Introduction -- 9.2 Principle of Photocatalytic Reduction of CO2 -- 9.3 Energy and Mass Transfers in Photocatalytic Reduction of CO2.9.3.1 Energy Flow from the Concentrator to Reactor -- 9.3.2 Energy Flow on the Surface of the Photocatalyst -- 9.3.3 Mass Flow in CO2 Photocatalytic Reduction -- 9.3.4 Product Selectivity in CO2 Photocatalytic Reaction -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Photoelectrochemical CO2 Reduction -- 10.1 Introduction -- 10.1.1 Introduction of Photoelectrocatalytic Reduction of CO2 -- 10.1.2 Principles of Photoelectrocatalytic Reduction of CO2 -- 10.1.3 System Configurations of Photoelectrocatalytic Reduction of CO2 -- 10.2 PEC CO2 Reduction Principles -- 10.2.1 Thermodynamics and Kinetics of CO2 Reduction -- 10.2.2 Reaction Conditions -- 10.2.2.1 Reaction Temperature and Pressure -- 10.2.2.2 pH Value -- 10.2.2.3 Solvent -- 10.2.2.4 External Electrical Bias -- 10.2.3 Performance Evaluation of PEC CO2 Reduction -- 10.2.3.1 Product Evolution Rate and Catalytic Current Density -- 10.2.3.2 Turnover Number and Turnover Frequency -- 10.2.3.3 Overpotential -- 10.2.3.4 Faradaic Efficiency -- 10.3 Application of Solar‐to‐Chemical Energy Conversion in PEC CO2 Reduction -- 10.3.1 PEC CO2 Reduction on Semiconductors -- 10.3.1.1 Oxide Semiconductors -- 10.3.1.2 Non‐oxide Semiconductors -- 10.3.1.3 Chalcogenide Semiconductors -- 10.3.2 PEC CO2 Reduction on Cocatalyst Systems -- 10.3.2.1 Metal Nanoparticles -- 10.3.2.2 Metal Complexes -- 10.3.3 PEC CO2 Reduction on Hybrid Semiconductors -- 10.3.3.1 Conductive Polymers -- 10.3.3.2 Enzymatic Biocatalysts -- 10.3.3.3 Organic Molecules -- 10.4 Other Configurations for PEC CO2 Reduction -- 10.5 Conclusion and Outlook -- Acknowledgments -- Conflict of Interest -- References -- Chapter 11 Photocatalytic and Photoelectrochemical Nitrogen Fixation -- 11.1 Introduction -- 11.2 Fundamental Principles and Present Challenges -- 11.2.1 Principles in N2 Reduction for NH3 Production.11.2.2 Challenges for N2 Reduction to NH3 -- 11.3 Strategies for Catalyst Design and Fabrication -- 11.3.1 Defect Engineering -- 11.3.1.1 Vacancies -- 11.3.1.2 Heteroatom Doping -- 11.3.1.3 Amorphization -- 11.3.2 Structure Engineering -- 11.3.2.1 Morphology Regulation -- 11.3.2.2 Facet Control -- 11.3.3 Interface Engineering -- 11.3.4 Heterojunction Engineering -- 11.3.5 Co‐catalyst Engineering -- 11.3.6 Biomimetic Engineering -- 11.4 Conclusions and Outlook -- References -- Chapter 12 Photocatalytic Production of Hydrogen Peroxide Using MOF Materials -- 12.1 Introduction -- 12.2 Photocatalytic H2O2 Production Through Selective Two‐Electron Reduction of O2 Utilizing NiO/MIL‐125‐NH2 -- 12.3 Two‐Phase System Utilizing Linker‐Alkylated Hydrophobic MIL‐125‐NH2 for Photocatalytic H2O2 Production -- 12.4 Ti Cluster‐Alkylated Hydrophobic MIL‐125‐NH2 for Photocatalytic H2O2 Production in Two‐Phase System -- 12.5 Conclusion and Outlooks -- Reference -- Chapter 13 Photocatalytic and Photoelectrochemical Reforming of Methane -- 13.1 Introduction -- 13.2 Photo‐Mediated Processes -- 13.3 Differences Between Photo‐Assisted Catalysis and Thermocatalysis -- 13.3.1 Catalyst Involved -- 13.3.2 Reactors -- 13.3.3 Mechanism -- 13.3.4 Equations for Quantum Efficiency -- 13.4 Reactions of Methane Conversion via Photo‐Assisted Catalysis -- 13.4.1 Methane Dry Reforming -- 13.4.2 Methane Steam Reforming -- 13.4.3 Methane Coupling -- 13.4.4 Methane Oxidation -- 13.4.5 Methane Dehydroaromatization -- 13.5 Conclusions and Perspectives -- Acknowledgment -- References -- Chapter 14 Photocatalytic and Photoelectrochemical Reforming of Biomass -- 14.1 Introduction -- 14.2 Fundamentals of Photocatalytic and Photoelectrochemical Processes -- 14.2.1 Photocatalytic Process -- 14.2.2 Photoelectrochemical Process -- 14.3 Photocatalytic Reforming of Biomass.14.3.1 Photocatalytic Reforming of Lignin.Solar energyEnergy conversionSolar energy.Energy conversion.621.3124Sun HongqiMiAaPQMiAaPQMiAaPQBOOK9910830868803321Solar-to-chemical conversion4063809UNINA