01426cam0 22002891 450 SOBE0007221120220608143401.020220608d1987 |||||ita|0103 baitaITLe Monnier : Dal Risorgimento alla Repubblica(1837-1987)Centocinquantanni per la cultura e per la scuolaCosimo Ceccuticon una introduzione di Giovanni SpadoliniFirenzeFelice Le Monnier1987XLIV, 328 p., 31 c. di tav21 cmQQuaderni di storia75001SOBE000707392001 *Q : Quaderni di storia75Le Monnier : Dal Risorgimento alla Repubblica : (1837-1987) : Centocinquantanni per la cultura e per la scuolaSOBA000245012856427Ceccuti, CosimoA600200025521070156238Spadolini, GiovanniAF00019216070ITUNISOB20220608RICAUNISOBUNISOBSaggi|I176677SOBE00072211M 102 Monografia moderna SBNMFondo|LeopardianoSaggi|I000026CON17667720220607FondoLeopardianoDonorovitoUNISOBUNISOB20220608143130.020220608143209.0rovitoPer le modalità di consultazione vedi home page Biblioteca link FondiLe Monnier : Dal Risorgimento alla Repubblica : (1837-1987) : Centocinquantanni per la cultura e per la scuola2856427UNISOB05520nam 2200697 a 450 991083082240332120230721025459.01-280-84766-297866108476620-470-61242-80-470-39455-21-84704-574-X(CKB)1000000000335558(EBL)700734(OCoLC)769341523(SSID)ssj0000119980(PQKBManifestationID)11130236(PQKBTitleCode)TC0000119980(PQKBWorkID)10080077(PQKB)10370881(MiAaPQ)EBC700734(MiAaPQ)EBC261984(Au-PeEL)EBL261984(OCoLC)936813928(EXLCZ)99100000000033555820061002d2007 uy 0engur|n|---|||||txtccrChannel coding in communication networks[electronic resource] from theory to turbocodes /edited by Alain GlavieuxLondon ;Newport Beach, CA ISTE20071 online resource (438 p.)Digital signal and image processing seriesDescription based upon print version of record.1-905209-24-X Includes bibliographical references and index.Channel Coding in Communication Networks; Table of Contents; Homage to Alain Glavieux; Chapter 1. Information Theory; 1.1. Introduction: the Shannon paradigm; 1.2. Principal coding functions; 1.2.1. Source coding; 1.2.2. Channel coding; 1.2.3. Cryptography; 1.2.4. Standardization of the Shannon diagram blocks; 1.2.5. Fundamental theorems; 1.3. Quantitative measurement of information; 1.3.1. Principle; 1.3.2. Measurement of self-information; 1.3.3. Entropy of a source; 1.3.4. Mutual information measure; 1.3.5. Channel capacity; 1.3.6. Comments on the measurement of information1.4. Source coding1.4.1. Introduction; 1.4.2. Decodability, Kraft-McMillan inequality; 1.4.3. Demonstration of the fundamental theorem; 1.4.4. Outline of optimal algorithms of source coding; 1.5. Channel coding; 1.5.1. Introduction and statement of the fundamental theorem; 1.5.2. General comments; 1.5.3. Need for redundancy; 1.5.4. Example of the binary symmetric channel; 1.5.4.1. Hamming's metric; 1.5.4.2. Decoding with minimal Hamming distance; 1.5.4.3. Random coding; 1.5.4.4. Gilbert-Varshamov bound; 1.5.5. A geometrical interpretation; 1.5.6. Fundamental theorem: Gallager's proof1.5.6.1. Upper bound of the probability of error1.5.6.2. Use of random coding; 1.5.6.3. Form of exponential limits; 1.6. Channels with continuous noise; 1.6.1. Introduction; 1.6.2. A reference model in physical reality: the channel with Gaussian additive noise; 1.6.3. Communication via a channel with additive white Gaussian noise; 1.6.3.1. Use of a finite alphabet, modulation; 1.6.3.2. Demodulation, decision margin; 1.6.4. Channel with fadings; 1.7. Information theory and channel coding; 1.8. Bibliography; Chapter 2. Block Codes; 2.1. Unstructured codes2.1.1. The fundamental question of message redundancy2.1.2. Unstructured codes; 2.1.2.1. Code parameters; 2.1.2.2. Code, coding and decoding; 2.1.2.3. Bounds of code parameters; 2.2. Linear codes; 2.2.1. Introduction; 2.2.2. Properties of linear codes; 2.2.2.1. Minimum distance and minimum weight of a code; 2.2.2.2. Linear code base, coding; 2.2.2.3. Singleton bound; 2.2.3. Dual code; 2.2.3.1. Reminders of the Gaussian method; 2.2.3.2. Lateral classes of a linear code C; 2.2.3.3. Syndromes; 2.2.3.4. Decoding and syndromes; 2.2.3.5. Lateral classes, syndromes and decoding2.2.3.6. Parity check matrix and minimum code weight2.2.3.7. Minimum distance of C and matrix H; 2.2.4. Some linear codes; 2.2.5. Decoding of linear codes; 2.3. Finite fields; 2.3.1. Basic concepts; 2.3.2. Polynomial modulo calculations: quotient ring; 2.3.3. Irreducible polynomial modulo calculations: finite field; 2.3.4. Order and the opposite of an element of F2[X]/(p(X)); 2.3.4.1. Order; 2.3.4.2. Properties of the order; 2.3.4.3. Primitive elements; 2.3.4.4. Use of the primitives; 2.3.4.5. How to find a primitive; 2.3.4.6. Exponentiation; 2.3.5. Minimum polynomials2.3.6. The field of nth roots of unityThis book provides a comprehensive overview of the subject of channel coding. It starts with a description of information theory, focusing on the quantitative measurement of information and introducing two fundamental theorems on source and channel coding. The basics of channel coding in two chapters, block codes and convolutional codes, are then discussed, and for these the authors introduce weighted input and output decoding algorithms and recursive systematic convolutional codes, which are used in the rest of the book. Trellis coded modulations, which have their primary applications in hiDigital signal and image processing series.Coding theoryError-correcting codes (Information theory)Coding theory.Error-correcting codes (Information theory)003.54003/.54621.3821Glavieux Alain912232MiAaPQMiAaPQMiAaPQBOOK9910830822403321Channel coding in communication networks2042580UNINA