02238nam 2200541 a 450 991069992070332120110421143826.0(CKB)5470000002406753(OCoLC)713878884(EXLCZ)99547000000240675320110421d2010 ua 0engurmn|||||||||txtrdacontentcrdamediacrrdacarrierRecent Stirling conversion technology developments and operational measurements at NASA Glenn Research Center[electronic resource] /Salvatore M. Oriti and Nicholas A. Schifer ; prepared for the Seventh International Energy Conversion Engineering Conference (IECEC) sponsored by the American Institute of Aeronautics and Astronautics, Denver, Colorado, August 2-5, 2009Cleveland, Ohio :National Aeronautics and Space Administration, Glenn Research Center,[2010]1 online resource (14 pages) illustrations, colorNASA/TM ;2010-216245Title from title screen (viewed on April 21, 2011)."August 2010.""AIAA-2009-4556."Includes bibliographical references (page 14).Stirling cyclenasatAcoustic emissionnasatSignal detectorsnasatPiston enginesnasatElectromagnetic interferencenasatRadioisotope heat sourcesnasatStirling enginesnasatStirling cycle.Acoustic emission.Signal detectors.Piston engines.Electromagnetic interference.Radioisotope heat sources.Stirling engines.Oriti Salvatore M1386679Schifer Nicholas A1407907NASA Glenn Research Center.International Energy Conversion Engineering Conference(7th :2009 :Denver, Colo.)GPOGPOBOOK9910699920703321Recent Stirling conversion technology developments and operational measurements at NASA Glenn Research Center3540222UNINA10912nam 2200493 450 991083080440332120230107102126.03-527-83058-83-527-83060-X(MiAaPQ)EBC7069549(Au-PeEL)EBL7069549(CKB)24342157200041(EXLCZ)992434215720004120230107d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierDrug development for malaria novel approaches for prevention and treatment /edited by Pravin KendrekarWeinheim, Germany :Wiley-VCH,[2023]©20231 online resource (395 pages)Print version: Kendrekar, Pravin Drug Development for Malaria Newark : John Wiley & Sons, Incorporated,c2022 9783527348602 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Part I Introduction -- Chapter 1 Chronology of Drug Development for Malaria -- 1.1 Introduction -- 1.1.1 Life Cycle of Malaria (Adapted from CDC) -- 1.2 Malaria - Erstwhile Memories -- 1.2.1 Progress Fighting Malaria -- 1.3 Current Chemotherapy Used to Treat Malaria -- 1.3.1 Current Combination Therapy -- 1.4 Drug Resistance of Antimalarial Drugs -- 1.4.1 Detection of Drug Resistance -- 1.5 Newer Drugs Approved for Malaria Treatment -- 1.6 Current Approaches to Developing a Malaria Vaccine -- 1.6.1 Hope for Vaccine Lies in the Parasite Itself -- 1.7 Conclusion: The Path Forward -- 1.7.1 RTS, ‐S Vaccine: A New Tool with Potential for Africa -- References -- Part II Challenges and Opportunities in Malaria Therapy -- Chapter 2 Scientific Challenges and Treatment Opportunities in the Face of Shifting Malaria Epidemiology -- 2.1 Introduction -- 2.2 The Scientific Challenges Against Malarial Drug -- 2.3 Advances in Understanding and Managing Drug Resistance -- 2.3.1 Vector and Its Control -- 2.3.2 Parasite and Its Control -- 2.3.2.1 Malaria Vaccine -- 2.3.2.2 Antimalarial Drugs -- 2.4 Methods to Assess the Presence and Level of Drug Resistance -- 2.4.1 Therapeutic Efficacy of Antimalarial Drugs -- 2.4.2 Molecular Markers Associated with P. falciparum -- 2.5 Antimalarial Drugs Currently in Use and in the Pipeline -- 2.6 Future -- References -- Chapter 3 Emerging Formulation Technologies Against Malaria Resurgence -- List of Abbreviations -- 3.1 Introduction -- 3.1.1 Major Pathological Hallmarks of Malaria -- 3.1.2 Current Treatment Strategies -- 3.2 Pitfalls of the Current Treatment Regimen -- 3.2.1 Drug Resistance -- 3.2.2 High Drug Dose -- 3.2.3 Long‐Term Treatment -- 3.2.4 Recurrence and Reversion of Diseases -- 3.3 Nanotechnology‐Based Strategies for Targeting in Antimalarial Therapy.3.3.1 Passive Targeting -- 3.3.2 Active Targeting -- 3.3.2.1 Hepatocyte Targeting -- 3.3.2.2 Erythrocyte Targeting -- 3.3.2.3 Brain Targeting -- 3.3.3 Rapid Diagnosis and Vector Control -- 3.4 Nano Formulations for Malarial Treatment -- 3.4.1 Lipid‐Based Nanoplatforms -- 3.4.1.1 Nanoemulsion -- 3.4.1.2 Self‐Emulsifying Drug Delivery System (SEDDS) -- 3.4.1.3 Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) -- 3.4.1.4 Liposome -- 3.4.2 Polymer‐Based Nanoplatforms for Malaria -- 3.4.2.1 Nanoparticles -- 3.4.2.2 Nanocapsules -- 3.4.2.3 Dendrimers -- 3.4.2.4 Micelles -- 3.4.2.5 Polymeric Hydrogel Nanoparticles -- 3.4.2.6 Nanosuspension -- 3.4.3 Organized Layer‐by‐Layer Assembly -- 3.4.4 Inorganic Nano‐architectonics -- 3.4.4.1 Metallic Platforms -- 3.4.4.2 Quantum Dots -- 3.4.4.3 Carbon Nanostructures -- 3.4.4.4 Bio‐ceramics -- 3.4.5 Bio‐inspired Nanocarriers -- 3.4.5.1 Vaccines Based on Bio‐inspired Nanocarriers -- 3.4.5.2 Bio‐engineered Strategy Based on Erythrocytes -- 3.4.6 Protein-Peptide‐Based Drug Delivery System -- 3.4.7 Stimuli‐Responsive Platforms for Malaria -- 3.4.7.1 pH‐Responsive Formulations -- 3.4.7.2 Thermo‐Responsive Formulations -- 3.4.7.3 Redox State Responsive Substances -- 3.4.7.4 Stimuli‐Responsive Liquid Crystalline Materials -- 3.5 Diagnostics -- 3.5.1 Stimuli‐Responsive Iron Oxide and Gold Nanoparticle Reagent System -- 3.5.2 Immunological Adjuvants -- 3.5.3 Nanofibers -- 3.6 Challenges in Clinical Translation of Nanomedicine -- 3.6.1 Biological Challenges -- 3.6.2 Biocompatibility and Safety -- 3.6.3 Challenges in Manufacturing Scale‐Up and Reproducibility -- 3.6.4 Analytical Characterization and Quality Control Challenges of Nano‐Formulations -- 3.6.5 Regulatory Challenges -- 3.6.6 Other Challenges -- 3.7 Summary and Future Perspective -- 3.8 Conclusion -- Acknowledgments -- References.Chapter 4 Targeted Drug Delivery for Antimalarial Therapy -- 4.1 Introduction -- 4.2 Remodelling of Parasite‐Infected Red Blood Cell (pRBC) -- 4.2.1 The Red Blood Cell Membrane (RBCM) -- 4.2.2 The Parasitophorous Vacuole Membrane (PVM) -- 4.2.3 The Parasite Plasma Membrane (PPM) -- 4.3 The Emergence of Resistance and Antimalarial Therapy Approach -- 4.4 Nanocarriers for Antimalarial Drug Delivery -- 4.4.1 Liposomes -- 4.4.2 Solid Lipid Nanoparticles (SLNs) -- 4.4.3 Nanostructured Lipid Carriers (NLCs) -- 4.4.4 Nano‐emulsions (NEs) -- 4.4.5 Polymeric Nanoparticles -- 4.5 Targeted Antimalarial Drug Delivery Systems -- 4.5.1 Passive Drug Targeting with Conventional Nanocarriers -- 4.5.2 Active Drug Targeting with Surface‐Modified Nanocarrier -- 4.6 Conclusion: Moving Towards the Future -- Acknowledgements -- References -- Chapter 5 The Imminent Threat of Antimalarial Drug Resistance -- 5.1 Introduction -- 5.2 Antimalarial Drugs: An Overview -- 5.3 The Evolution of CQ Resistance -- 5.3.1 Mechanism of Action of CQ -- 5.3.2 Basis of CQ Resistance -- 5.3.3 Prevalence of CQ Resistance -- 5.3.4 WHO Guidelines to Use CQ -- 5.4 Impact of Sulfadoxine-Pyrimethamine Resistance -- 5.4.1 Mechanism of Action of SP -- 5.4.2 SP Resistance -- 5.4.3 Distribution of DHPS and DHFR Mutation Across Globe -- 5.4.3.1 dhfr -- 5.4.3.2 dhps -- 5.4.4 WHO Guidelines to Use SP -- 5.4.4.1 IPTp Guidelines -- 5.4.4.2 IPTi Guidelines -- 5.5 ACT Resistance -- 5.5.1 Mechanism of Action of ART -- 5.5.2 ART Resistance and ACT Failure -- 5.5.3 WHO Guidelines -- 5.6 Conclusion: The Road Ahead -- References -- Chapter 6 Current Therapies and New Drug Targets for the Future Drug Development of Drug Resistant Malaria -- 6.1 Introduction -- 6.2 Life Cycle of Plasmodium falciparum -- 6.3 Current Antimalarial Therapy and Their Shortcomings -- 6.4 Drug Targets for Current Antimalarial Therapy.6.4.1 Drug‐Resistant Malaria and Identification of New Targets -- 6.4.1.1 Food Vacuole as Drug Targets -- 6.4.1.2 Shikimic Acid Pathway Targeting -- 6.4.1.3 Targeting Folate Pathway and Methionine Synthesis Pathway -- 6.4.1.4 Glycolytic Pathway Inhibition -- 6.4.2 Mitochondria as Drug Targets -- 6.4.2.1 Targeting Electron Transport Chain -- 6.4.2.2 Inhibition of Dihydroorate Dehydrogenase -- 6.5 Future Drug Development for the Treatment of Malaria -- 6.5.1 Benefits of Nanocarriers -- 6.5.2 Lipid‐Based Drug Delivery -- 6.5.3 Liposomes (as Nanocarriers) -- 6.5.4 Nanostructured Lipid Carriers -- 6.5.5 Solid Lipid Nanocarriers -- 6.6 Conclusion -- References -- Part III Drug Development -- Chapter 7 Assays for Antimalarial Drug Discovery -- 7.1 Introduction -- 7.2 In Vitro Assays for Antimalarial Drug Discovery -- 7.2.1 Schizont Maturation Inhibition Assay (Microscopic Test) -- 7.2.2 In Vitro Micro Test Technique -- 7.2.3 Radioisotope Assay -- 7.2.4 Colorimetric Assay (Plasmodium Lactate Dehydrogenase Assay [pLDH]) -- 7.2.5 ELISA‐Based Methods -- 7.2.5.1 DELI Assay -- 7.2.5.2 Assay Based on Histidine‐Rich Protein II (HRP II) of P. falciparum -- 7.2.6 Flow Cytometry -- 7.2.7 Fluorometric Assay -- 7.2.8 β‐Hematin Formation (Haemozoin Test) -- 7.2.9 Drug Interaction Assay and Isobologram Analysis -- 7.2.10 PCR‐Based Methods -- 7.2.11 In Vitro Assays Targeting Exo‐erythrocytic and Sexual Stages of the Parasite -- 7.2.11.1 Exo‐erythrocytic Schizontocidal Assay -- 7.2.11.2 Ex‐flagellation Assay -- 7.3 In Vivo Assays for Antimalarial Drug Discovery -- 7.3.1 Peters' 4‐Day Test -- 7.3.2 Dose Ranging Full 4‐Day Test -- 7.3.3 Onset/Recrudescence Test -- 7.3.4 Preventive Test -- 7.3.5 Curative Test -- 7.3.6 Hill's Test for Causal Prophylaxis and Residual Activity -- 7.3.7 Assays with P. berghei Green Fluorescent Protein (PbGFP).7.3.8 Assays Employing Immunocompromised Mice -- 7.3.9 Primate Models for In Vivo Studies -- 7.3.10 Sporontocidal Assays -- 7.3.11 Anti‐sporozoite Assay -- 7.4 Ex Vivo Assays for Antimalarial Drug Discovery -- 7.5 Assays for Assessment of In Vitro Toxicity -- 7.5.1 MTT Assay -- 7.5.2 XTT Assay -- 7.5.3 LDH (Lactate Dehydrogenase) Assay -- 7.5.4 Protein Content Assay -- 7.5.5 Neutral Red Uptake Assay (NRU) -- 7.6 Assays for Assessment of In Vivo Toxicity -- 7.6.1 Acute Toxicity -- 7.6.1.1 Limit Test of Lorke -- 7.6.1.2 Up and Down Procedure -- 7.6.2 Chronic Toxicity -- 7.7 Conclusion -- References -- Chapter 8 Aminoacyl‐tRNA Synthetases as Malarial Drug Targets: A Structural Biology Perspective -- 8.1 Introduction -- 8.2 Pf/Pv‐aaRSs -- 8.2.1 Pf/Pv Genome -- 8.2.2 Aminoacyl‐tRNA Synthetases (aaRSs) -- 8.3 Aminoacyl‐tRNA Synthetases as Druggable Targets -- 8.4 Biochemical Screening of Drug Libraries -- 8.4.1 Colorimetric Assays -- 8.4.2 Enzyme‐Coupled Assays -- 8.4.3 Luciferase Assay -- 8.4.4 Assay to Test Synthetic as Well as Proofreading Activity -- 8.5 Structurally Validated Pf/Pv‐aaRSs as Drug Targets -- 8.5.1 Lysyl‐tRNA Synthetase (KRS) -- 8.5.2 Prolyl‐tRNA Synthetase -- 8.6 Potential Drug Targets Pf/Pv‐aaRSs -- 8.6.1 Leucyl‐tRNA Synthetase (LRS) -- 8.7 Arginyl‐tRNA Synthetase (RRS) -- 8.7.1 Tryptophanyl‐tRNA Synthetase (WRS) -- 8.7.2 Tyrosyl‐tRNA Synthetase -- 8.8 Others -- 8.9 Conclusion: The Road Ahead -- References -- Chapter 9 Natural Products as a Source for Antimalarial Drug Development Process - An Overview -- 9.1 Introduction -- 9.2 Phytochemicals as Antimalarial Agents: Recent Developments -- 9.2.1 Alkaloids -- 9.2.2 Terpenes -- 9.2.2.1 Sesquiterpene Lactones -- 9.2.2.2 Diterpenes -- 9.2.2.3 Triterpenes -- 9.2.2.4 Steroids and Others -- 9.2.3 Polyphenols -- 9.2.3.1 Biflavonoids -- 9.2.3.2 Prenylated Flavonoids -- 9.2.3.3 Other Flavonoids.9.3 Traditional System of Medicine and Malaria.MalariaTreatmentDrug developmentMalariaTreatment.Drug development.616.9362Kendrekar PravinMiAaPQMiAaPQMiAaPQBOOK9910830804403321Drug development for malaria3972631UNINA