10522nam 2200529 450 991083069310332120230630001825.03-527-82230-53-527-82229-13-527-82231-3(CKB)4100000011810977(MiAaPQ)EBC6524938(Au-PeEL)EBL6524938(OCoLC)1243553302(EXLCZ)99410000001181097720211014d2021 uy 0engurcn#---|||||txtrdacontentcrdamediacrrdacarrierAsymmetric hydrogenation and transfer hydrogenation /edited by Virginie Ratovelomanana-Vidal, Phannarath PhansavathFirst edition.Hoboken, New Jersey :John Wiley & Sons, Incorporated,[2021]©20211 online resourcePrint version: Asymmetric hydrogenation and transfer hydrogenation First edition. Hoboken, New Jersey : Wiley, [2021] 9783527346103 (DLC) 2020025500 3-527-34610-4 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 The Historical Development of Asymmetric Hydrogenation -- 1.1 Introduction -- 1.2 Early Work on the Recognition of Molecular Asymmetry -- 1.3 Origins and Early Development of Asymmetric Synthesis -- 1.4 Early Developments in the Asymmetric Heterogeneous Hydrogenation of Alkenes -- 1.5 The Development of Rhodium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.6 The Development of Ruthenium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.7 Conclusions -- References -- Chapter 2 Asymmetric (Transfer) Hydrogenation of Functionalized Alkenes During the Past Decade -- 2.1 Introduction -- 2.2 Asymmetric Hydrogenation with Rhodium Catalysts -- 2.2.1 Chiral Bisphosphine Ligands -- 2.2.2 Chiral Ferrocenyl Bisphosphine Ligands -- 2.2.3 Chiral Phosphine-Phosphoramidite and Phosphine-Phosphite Ligands -- 2.2.4 Self‐assembled Diphosphine Ligands -- 2.2.5 Monodentate Phosphorus Ligands -- 2.2.6 Asymmetric Transfer Hydrogenation with Rhodium Catalysts -- 2.3 Asymmetric Hydrogenation with Iridium Catalysts -- 2.3.1 Chiral Bidentate Ferrocenyl Ligands -- 2.3.2 Other Chiral Bidentate P,N‐ligands -- 2.3.3 Asymmetric Transfer Hydrogenation with Iridium Catalysts -- 2.4 Asymmetric Hydrogenation with Other Transition Metal Catalysts -- 2.4.1 Asymmetric Hydrogenation with Ruthenium Catalysts -- 2.4.2 Asymmetric Hydrogenation with Palladium Catalysts -- 2.5 Asymmetric (Transfer) Hydrogenation with First‐row Transition Metal Catalysts -- 2.6 Conclusion -- References -- Chapter 3 Asymmetric (Transfer) Hydrogenation of Functionalized Ketones -- 3.1 Introduction -- 3.2 Asymmetric (Transfer) Hydrogenation of Alkyl Ketones -- 3.3 Asymmetric Hydrogenation of α,β‐Unsaturated Ketones -- 3.3.1 Alkenyl Alkyl Ketones -- 3.3.2 Alkynyl Alkyl Ketones.3.4 Asymmetric Hydrogenation of α‐Aminoketones -- 3.5 Asymmetric Hydrogenation of α‐hydroxyketones -- 3.6 Asymmetric Hydrogenation of α‐Oxophosphonates -- 3.7 Summary and Conclusions -- References -- Chapter 4 Asymmetric (Transfer) Hydrogenation of Aryl and Heteroaryl Ketones -- 4.1 Introduction -- 4.2 Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones -- 4.2.1 Chiral Ruthenium Catalysts -- 4.2.1.1 Chiral Ruthenium‐Diphosphine/Diamine Catalysts -- 4.2.1.2 Chiral Arene-Ruthenium‐Diamine Catalysts -- 4.2.1.3 Chiral Ruthenium-Phosphine-Oxazoline Catalysts -- 4.2.1.4 Chiral Ruthenium Catalysts Containing Tridentate Pincer Ligands -- 4.2.1.5 Chiral Ruthenium Catalysts Containing Tetradentate Ligands -- 4.2.2 Chiral Iridium Catalysts -- 4.2.3 Other Chiral Metal Catalysts -- 4.3 Asymmetric Transfer Hydrogenation of Aryl and Heteroaryl Ketones -- 4.3.1 Chiral Ruthenium Catalysts -- 4.3.1.1 Chiral Arene Ruthenium-N‐Sulfonylated 1,2‐Diamine Complexes -- 4.3.1.2 Chiral Ruthenium Catalysts with Other Bidentate Ligands -- 4.3.1.3 Chiral Ruthenium Catalysts Containing Tridentate and Tetradentate Ligands -- 4.3.2 Chiral Rhodium and Iridium Catalysts -- 4.3.2.1 Chiral Rhodium and Iridium Complexes Containing Diamine and Related Ligands -- 4.3.2.2 Chiral Rhodium and Iridium Catalysts Containing Other Ligands -- 4.3.3 Other Chiral Metal Catalysts -- 4.3.3.1 Chiral Iron Catalysts -- 4.3.3.2 Chiral Osmium Catalysts -- 4.3.3.3 Other Chiral Metal Catalysts -- 4.4 Summary -- References -- Chapter 5 Asymmetric (Transfer) Hydrogenation of Substituted Ketones Through Dynamic Kinetic Resolution -- 5.1 Introduction -- 5.2 α‐Substituted Ketones -- 5.3 α‐Substituted Cyclic Ketones -- 5.4 α,α'‐Disubstituted Cyclic Ketones -- 5.5 α,β‐Disubstituted Cyclic Ketones -- 5.6 α‐Substituted β‐Keto Esters -- 5.6.1 α‐Amino β‐Keto Esters -- 5.6.2 Other α‐Substituted β‐Keto Esters.5.7 α‐Substituted β‐Keto Amides -- 5.8 α‐Substituted β‐Keto Sulfones, Sulfonamides, and Phosphonates -- 5.9 β‐Substituted α‐Keto Esters and Phosphonates -- 5.10 β‐Alkoxy Ketones -- 5.11 1,2‐Diketones -- 5.12 β‐Substituted Ketones -- 5.13 α‐Substituted Aldehydes -- 5.14 Summary and Conclusions -- References -- Chapter 6 Industrial Applications of Asymmetric (Transfer) Hydrogenation -- 6.1 Introduction -- 6.2 Industrial Applications of Asymmetric Hydrogenation -- 6.2.1 Asymmetric Hydrogenation of Enamide -- 6.2.1.1 l‐DOPA -- 6.2.1.2 Ramipril -- 6.2.1.3 Sitagliptin -- 6.2.1.4 (R)‐3‐Amino‐1‐butanol -- 6.2.1.5 (S)‐2,6‐Dimethyltyrosine -- 6.2.1.6 Apremilast -- 6.2.2 Asymmetric Hydrogenation of Ketone -- 6.2.2.1 Duloxetine -- 6.2.2.2 Dorzolamide -- 6.2.2.3 (R)‐1‐(3,5‐Bis(trifluoromethyl)‐phenyl)ethanol -- 6.2.2.4 4‐AA (Key Intermediate to Carbapenem Antibiotics) -- 6.2.2.5 Rivastigmine -- 6.2.2.6 Montelukast -- 6.2.2.7 Crizotinib -- 6.2.2.8 (R)‐Phenylephrine -- 6.2.2.9 Atorvastatin Calcium Salt -- 6.2.2.10 Orlistat -- 6.2.2.11 Ezetimibe -- 6.2.3 Asymmetric Hydrogenation of Olefin -- 6.2.3.1 l‐Menthol -- 6.2.3.2 Sacubitril -- 6.2.3.3 Naproxen, Ibuprofen, and Flurbiprofen -- 6.2.3.4 Ramelteon -- 6.2.3.5 Aliskiren -- 6.2.3.6 (+)‐cis‐Methyl Dihydrojasmonate -- 6.2.4 Asymmetric Hydrogenation of Imine -- 6.2.4.1 Solifenacin -- 6.2.4.2 (S)‐Metolachlor -- 6.2.5 Asymmetric Transfer Hydrogenation -- 6.3 Summary and Conclusions -- References -- Chapter 7 Tethered Ruthenium(II) Catalysts in Asymmetric Transfer Hydrogenation -- 7.1 Introduction: The Rationale Behind Tethered Catalysts Design -- 7.2 Tethered Ru(II) Catalysts and Their Syntheses -- 7.2.1 Synthetic Approaches to Tethered Catalysts -- 7.3 Applications to Asymmetric Reductions of Ketones and Imines -- 7.3.1 Reductions of Acetophenone Derivatives -- 7.3.1.1 Asymmetric Transfer Hydrogenation Using Formic Acid.7.3.1.2 Reduction Under Aqueous Conditions -- 7.3.1.3 Hydrogenation with Hydrogen Gas -- 7.3.1.4 Racemic Catalysts for Reductions -- 7.3.1.5 Specific Applications to Complex Acetophenone Derivatives -- 7.3.2 Reductions of Acetylenic Ketones -- 7.3.3 Reductions of Benzophenone Ketones -- 7.3.4 Reductions of Diverse Ketones -- 7.3.5 Dynamic Kinetic Resolutions -- 7.3.6 Reductions of Imines -- 7.4 Conclusions and Outlook -- References -- Chapter 8 Homogeneous Asymmetric Hydrogenation of Heteroaromatic Compounds Catalyzed by Transition Metal Complexes -- 8.1 Introduction -- 8.2 Asymmetric Hydrogenation of Quinolines -- 8.3 Asymmetric Hydrogenation of Quinoxalines -- 8.4 Asymmetric Hydrogenation of Isoquinolines -- 8.5 Asymmetric Hydrogenation of Pyridines and Pyrazines -- 8.6 Asymmetric Hydrogenation of Indoles and Pyrroles -- 8.7 Asymmetric Hydrogenation of Heteroarenes with Multi‐N‐Heterocycles -- 8.8 Asymmetric Hydrogenation of Other N‐Heteroarenes -- 8.9 Asymmetric Hydrogenation of O‐ and S‐Heteroarenes -- 8.10 Summary and Conclusions -- Acknowledgments -- References -- Chapter 9 Asymmetric (Transfer) Hydrogenation of Imines -- 9.1 Asymmetric Hydrogenation of Imines -- 9.1.1 Iridium Catalysts -- 9.1.1.1 (P,P) Ligands -- 9.1.1.2 (P,N) Ligands -- 9.1.1.3 P‐Monodentate Ligands -- 9.1.2 Rhodium and Palladium Catalysts -- 9.2 Asymmetric Transfer Hydrogenation of Imines -- 9.2.1 Ruthenium Catalysts -- 9.2.2 Iridium and Rhodium Catalysts -- 9.2.3 Iron Catalysts -- 9.3 New Approaches -- 9.3.1 Metal Free -- 9.3.2 Biocatalytic Imine Reduction -- 9.3.2.1 Artificial Metalloenzymes -- 9.3.2.2 Imine Reductases (IREDs) -- 9.4 Summary and Conclusions -- References -- Chapter 10 Asymmetric Hydrogenation in Continuous‐Flow Conditions -- 10.1 Introduction -- 10.2 Chirally Modified Metal Surfaces -- 10.3 Well‐defined Transition‐metal Complexes.10.3.1 Immobilized Systems -- 10.3.1.1 Covalently Anchored Ligands -- 10.3.1.2 Immobilization by the Augustine Method -- 10.3.1.3 Ionic Liquids as Matrices for Transition‐metal Complex Catalysts -- 10.3.2 Homogeneous Systems -- 10.3.3 Self‐supported Systems -- 10.4 Organocatalysts -- 10.5 Chiral Auxiliary‐controlled Asymmetric Hydrogenation in Flow -- 10.6 Summary and Outlook -- References -- Chapter 11 Organocatalytic Asymmetric Transfer Hydrogenation Reactions -- 11.1 Introduction -- 11.2 Reduction of C C Double Bonds -- 11.3 Reduction of C N Double Bonds -- 11.4 Cascade Reactions -- 11.5 Dearomatization -- 11.6 Conclusions -- References -- Index -- EULA."The development of efficient and straightforward methods to obtain chiral compounds is an important and challenging research area in modern synthetic organic chemistry. Especially asymmetric hydrogenation reactions have been investigated extensively in the past decades. This reaction methodology was pioneered by Knowles and Noyori (Nobel Prize in Chemistry 2001) and is now frequently used in both academia and industry. It is an economical reaction, easy to carry out, and environmentally friendly. It allows the efficient preparation of chiral building blocks of natural products, pharmaceuticals, agrochemicals, and flavors"--Provided by publisher.HydrogenationHydrogenation.547.23Ratovelomanana-Vidal VirginiePhansavath PhannarathMiAaPQMiAaPQMiAaPQBOOK9910830693103321Asymmetric hydrogenation and transfer hydrogenation3927406UNINA