11019nam 2200493 450 991083068830332120230109144307.03-527-82985-73-527-82983-03-527-82984-9(MiAaPQ)EBC7070234(Au-PeEL)EBL7070234(CKB)24352858400041(EXLCZ)992435285840004120230109d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierTwo-dimensional-materials-based membranes preparation, characterization, and applications /edited by Wanqin Jin and Gongping LiuWeinheim, Germany :Wiley-VCH,[2022]©20221 online resource (397 pages)Includes index.Print version: Jin, Wanqin Two-Dimensional-Materials-Based Membranes Newark : John Wiley & Sons, Incorporated,c2022 9783527348480 Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- References -- Chapter 2 Fabrication Methods for 2D Membranes -- 2.1 Introduction -- 2.2 Synthesis of Nanosheets -- 2.2.1 Top‐Down Method -- 2.2.1.1 Mechanical‐Force Exfoliation -- 2.2.1.2 Ion‐Intercalation Exfoliation -- 2.2.1.3 Oxidation‐Assisted Exfoliation -- 2.2.1.4 Selective‐Etching Method -- 2.2.2 Bottom‐Up Method -- 2.2.2.1 Chemical Vapor Deposition -- 2.2.2.2 Hydro/Solvothermal Synthesis -- 2.2.2.3 Interfacial Synthesis -- 2.3 Membrane Structures and Fabrication Methods -- 2.3.1 Two‐Dimensional‐Material Nanosheet Membranes -- 2.3.1.1 Zeolite Membrane -- 2.3.1.2 MOF Membrane -- 2.3.1.3 Porous Graphene Membrane -- 2.3.2 Two‐Dimensional‐Material Laminar Membranes -- 2.3.2.1 Assembly Strategies of Laminates -- 2.3.2.2 Nanostructure Controlling of Laminar Membranes -- 2.3.3 Two‐Dimensional‐Materials‐Based Mixed‐Matrix Membranes (MMMs) -- 2.3.3.1 Fabrication Methods of MMMs -- 2.3.3.2 Effect of Physicochemical Properties of 2D Fillers -- 2.3.4 Other Hybrid Membranes -- 2.4 Summary and Outlook -- References -- Chapter 3 Nanoporous Single‐Layer Graphene Membranes for Gas Separation -- 3.1 Introduction -- 3.2 Gas‐Separation Potential of N‐SLG Membranes -- 3.3 Engineering Gas‐Selective Vacancy Defects -- 3.3.1 Bottom‐Up Synthesis of N‐SLG -- 3.3.2 Postsynthetic Etching of SLG -- 3.3.2.1 Physical Etching Methods -- 3.3.2.2 Chemical Etching Techniques -- 3.4 Fabrication of Large‐Area N‐SLG Membranes -- 3.5 Summary and Outlook -- References -- Chapter 4 Graphene‐Based Membranes for Water Separation -- 4.1 Introduction -- 4.2 Water Transport Mechanisms in Graphene‐Based Membranes -- 4.2.1 Internal‐Geometry‐Mediated Transport -- 4.2.1.1 Size Effects -- 4.2.1.2 Length Effects -- 4.2.2 Surface‐Chemistry‐Mediated Transport -- 4.2.3 External‐Environment‐Mediated Transport.4.2.3.1 Solution Chemistry Effects -- 4.2.3.2 Applied Pressure Effects -- 4.2.3.3 Applied Potential Effects -- 4.2.4 Guest‐Material‐Mediated Transport -- 4.2.4.1 Stabilizing Effects -- 4.2.4.2 Size‐Controlling Effects -- 4.2.4.3 Surface‐Chemistry‐Modifying Effects -- 4.2.4.4 Smart Gating Effects -- 4.3 Graphene‐based Membrane Water Separation Applications -- 4.3.1 Nanofiltration -- 4.3.2 Reverse Osmosis -- 4.3.3 Forward Osmosis -- 4.4 Conclusions and Perspectives -- References -- Chapter 5 Graphene‐Based Membranes for Ions Separation -- 5.1 Introduction -- 5.2 Single‐Layer Graphene -- 5.2.1 Theoretical Calculations -- 5.2.2 Experimental Validations -- 5.3 Graphene Oxide Membranes -- 5.3.1 Structure of Graphene Oxide and Graphene Oxide Membranes -- 5.3.2 Ultrafast Water Permeability -- 5.3.3 Ion Selectivity -- 5.3.4 Microstructure Optimization for Desalination -- 5.3.5 Interlayer Spacing Control for Desalination -- 5.3.5.1 Cross‐Linking -- 5.3.5.2 Reduction -- 5.3.5.3 External Pressure -- 5.3.6 Charge Modification for Desalination -- 5.3.7 External Field Modulated Ion Transport -- 5.3.8 Ion Transport Through Planar GO Laminates -- 5.4 Summary and Perspective -- References -- Chapter 6 Graphene‐Based Membranes for Pervaporation -- 6.1 Introduction -- 6.2 Mass‐Transport Mechanism -- 6.2.1 Mass Transport in Pervaporation Process -- 6.2.2 Mass Transport in GO Membrane -- 6.3 Progresses in GO Membranes for Pervaporation -- 6.3.1 Controlling Self‐Assembly Condition -- 6.3.2 Designing Graphene Oxide‐Framework (GOF) Membrane -- 6.3.3 Assembly with Polymers -- 6.3.4 Intercalating Nanomaterials -- 6.3.5 Tuning Surface Structure -- 6.4 Summary and Perspective -- References -- Chapter 7 Two‐Dimensional‐Materials Membranes for Gas Separations -- 7.1 Introduction -- 7.2 2D‐Materials Membranes -- 7.2.1 Zeolites -- 7.2.2 Graphene‐Based Materials.7.2.2.1 Nanoporous Graphene -- 7.2.2.2 Graphene Oxide -- 7.2.3 MOFs -- 7.2.4 COFs -- 7.2.5 g‐C3N4 -- 7.2.6 MXenes -- 7.2.7 Other 2D Materials -- 7.3 Preparation of 2D Nanosheets -- 7.3.1 Top‐Down Method -- 7.3.2 Bottom‐Up Method -- 7.4 Preparation of 2D‐Materials Membranes -- 7.4.1 Top‐Down Method -- 7.4.1.1 Filtration‐Assisted Assembly -- 7.4.1.2 Coating -- 7.4.1.3 Layer‐by‐Layer Assembly -- 7.4.2 Bottom‐Up Method -- 7.5 Gas Separations -- 7.5.1 H2/CO2, H2/N2, and H2/CH4 Separations -- 7.5.2 CO2/N2 and CO2/CH4 Separations -- 7.5.3 Other Gas/Vapor Separations -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Layered Double Hydroxide Membranes for Versatile Separation Applications -- 8.1 Introduction on LDHs and LDH‐Based Membranes -- 8.2 Strategy for LDH‐Based Membrane Preparation -- 8.2.1 Solution‐Based In Situ Growth -- 8.2.2 Post‐Synthetic Deposition -- 8.2.3 Blending with Polymers -- 8.3 Research Progress on LDH‐Based Membranes -- 8.3.1 Interlayer Gallery‐Based Separation -- 8.3.1.1 Pristine Interlayer Gallery‐Based Separation -- 8.3.1.2 Regenerated Interlayer Gallery‐Based Separation -- 8.3.2 Geometric Shape‐Based Separation -- 8.3.2.1 Geometric Shape‐Based Gas Separation -- 8.3.2.2 Geometric Shape‐Based Liquid Separation -- 8.3.2.3 Geometric Shape‐Based Particulate Matter Capture -- 8.3.2.4 Geometric Shape‐Based Sacrificing Templates -- 8.3.3 Unusual Thermal Behavior‐Based Separation -- 8.3.4 Photocatalytic Activity‐Based Separation -- 8.3.5 Positive Surface Charge‐Based Separation -- 8.3.5.1 Positive Surface Charge‐Based Ultrafiltration -- 8.3.5.2 Positive Surface Charge‐Based Nanofiltration -- 8.3.5.3 Positive Surface Charge‐Based Reverse Osmosis -- 8.3.5.4 Positive Surface Charge‐Based Forward Osmosis -- 8.3.5.5 Positive Surface Charge‐Based Nanocomposite Membranes -- 8.3.6 Hydrophilicity‐Based Water Treatment.8.3.6.1 Hydrophilicity‐Based Microfiltration -- 8.3.6.2 Hydrophilicity‐Based Ultrafiltration -- 8.3.6.3 Hydrophilicity‐Based Nanofiltration -- 8.3.6.4 Hydrophilicity‐Based Reverse Osmosis -- 8.3.6.5 Hydrophilicity‐Based Forward Osmosis -- 8.4 Summary and Outlook -- References -- Chapter 9 MXene: A Novel Two‐Dimensional Membrane Material for Molecular Separation -- 9.1 Introduction -- 9.2 Synthesis and Processing -- 9.2.1 Synthesis of Multilayered MXene Phases -- 9.2.2 Fabrication of Single MXene Flakes -- 9.2.3 Surface Properties of MXene Flakes -- 9.2.4 Preparation of MXene‐Based Membranes -- 9.2.4.1 Drop‐Coating -- 9.2.4.2 Spraying or Spinning Coating -- 9.2.4.3 Pressure‐Assisted Filtration -- 9.3 MXene‐Based Membranes for Molecular Separation -- 9.3.1 Liquid Separation -- 9.3.1.1 Desalination -- 9.3.1.2 Organic Solvent Nanofiltration -- 9.3.1.3 Pervaporation Solvent Dehydration -- 9.3.1.4 Dyes and Natural Organic Matter Rejection -- 9.3.1.5 Oil-Water Separation -- 9.3.2 Gas Separation -- 9.4 Conclusions and Perspective -- References -- Chapter 10 2D‐Materials Mixed‐Matrix Membranes -- 10.1 Introduction -- 10.2 Two‐Dimensional Materials as Dispersed Phase of MMMs -- 10.2.1 Graphene Oxide (GO) -- 10.2.1.1 Increasing Molecular Transport Channels -- 10.2.1.2 Reducing Nonselective Defects -- 10.2.1.3 Introducing the Functional Sites for Facilitated Transport -- 10.2.2 Metal-Organic Frameworks (MOFs) -- 10.2.2.1 Increasing Molecular Transport Channels -- 10.2.2.2 Enhancing the Interfacial Compatibility Between Nanomaterials and Polymers -- 10.2.3 Covalent Organic Frameworks (COFs) -- 10.2.3.1 Increasing Molecule Transport Channels -- 10.2.3.2 Introducing Facilely‐Tailored Functionality -- 10.2.3.3 Constructing Hierarchical Structures in MMMs -- 10.2.4 Other 2D Materials -- 10.2.4.1 Transition‐Metal Dichalcogenides (TMDs).10.2.4.2 Graphitic Carbon Nitride (g‐C3N4) -- 10.2.4.3 MXenes -- 10.3 Two‐Dimensional Material as Continuous Phase of MMMs -- 10.3.1 Graphene Oxide (GO) -- 10.3.1.1 Controlling Interlayer Spacing -- 10.3.1.2 Modulating the Physical/Chemical Microenvironment -- 10.3.2 Metal-Organic Framework (MOF) -- 10.3.2.1 Enhancing Processability and Stability of MOFs -- 10.3.2.2 Modulating the Physical/Chemical Microenvironment -- 10.3.3 Covalent Organic Frameworks (COFs) -- 10.3.3.1 Regulating the Physical/Chemical Microenvironment -- 10.3.3.2 Modulating Crystallinity, Porosity, Mechanical Properties -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Transport Mechanism of 2D Membranes -- 11.1 Introduction -- 11.2 Fundamentals of Mass Transport Through Membranes -- 11.2.1 Transport Mechanism in Porous Membranes -- 11.2.2 Transport Mechanism in Nonporous Membranes -- 11.2.3 Transport Mechanism in Charged Membranes -- 11.2.4 Permeability-Selectivity Trade‐Off for Polymers -- 11.3 Nanofluidic Transport Through Confined Dimensions -- 11.3.1 Confinement Architectures for Artificial Nanofluidic Systems -- 11.3.2 Continuum Modeling of Nanofluidic Transport in Confined Channels -- 11.3.3 Mechanisms of Nanofluidic Transport in Atomically Thin Nanopores -- 11.3.4 Effects of Electrical Double Layer in Nanofluidic Ion Transport -- 11.3.5 Various Confinement Effects in Nanofluidic Transport at the Subnanometer Scale -- 11.3.5.1 Molecular Rearrangement -- 11.3.5.2 Partial Dehydration or Desolvation -- 11.3.5.3 Electrical Effects -- 11.3.5.4 Quantum Effects -- 11.4 Unique Mass‐Transport Properties in 2D Membranes: Structural Aspects -- 11.4.1 Nanoporous Atomically Thin 2D Membranes (NATMs) -- 11.4.2 Staked 2D Membranes with Laminar Structure -- 11.4.3 2D Materials‐Embedded Mixed‐Matrix Membranes (MMMs) -- 11.5 Summary and Outlook -- References.Chapter 12 Conclusions and Perspectives.Two-dimensional materialsTwo-dimensional materials.620.115Jin Wanqin(Chemical engineer),Liu GongpingMiAaPQMiAaPQMiAaPQBOOK9910830688303321Two-dimensional-materials-based membranes3929188UNINA