06077nam 2200529 450 991083049330332120231110213255.01-119-12149-31-119-12147-71-119-12148-5(CKB)4330000000008684(MiAaPQ)EBC6803802(Au-PeEL)EBL6803802(OCoLC)1285778937(EXLCZ)99433000000000868420220815d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFault location on transmission and distribution systems principles and applications /Swagata Das, Surya Santoso, Sundaravaradan N. AnanthanHoboken, New Jersey ;Chichester, England :Wiley,[2022]©20221 online resource (291 pages)IEEE Press 1-119-12146-9 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Power System Faults -- 1.2 What Causes Shunt Faults? -- 1.3 Aim and Importance of Fault Location -- 1.4 Types of Fault‐Locating Algorithms -- 1.5 How are Fault‐Locating Algorithms Implemented? -- 1.6 Evaluation of Fault‐Locating Algorithms -- 1.7 The Best Fault‐Locating Algorithm -- 1.8 Summary -- Chapter 2 Symmetrical Components -- 2.1 Phasors -- 2.2 Theory of Symmetrical Components -- 2.3 Interconnecting Sequence Networks -- 2.4 Sequence Impedances of Three‐Phase Lines -- 2.5 Exercise Problems -- 2.6 Summary -- Chapter 3 Fault Location on Transmission Lines -- 3.1 One‐Ended Impedance‐Based Fault Location Algorithms -- 3.1.1 Simple Reactance Method -- 3.1.2 Takagi Method -- 3.1.3 Modified Takagi Method -- 3.1.4 Current Distribution Factor Method -- 3.2 Two‐Ended Impedance‐Based Fault Location Algorithms -- 3.2.1 Synchronized Method -- 3.2.2 Unsynchronized Method -- 3.2.3 Unsynchronized Negative‐Sequence Method -- 3.2.4 Synchronized Line Current Differential Method -- 3.3 Three‐Ended Impedance‐Based Fault Location Algorithms -- 3.3.1 Synchronized Method -- 3.3.2 Unsynchronized Method -- 3.3.3 Unsynchronized Negative‐Sequence Method -- 3.3.4 Synchronized Line Current Differential Method -- 3.4 Traveling‐Wave Fault Location Algorithms -- 3.4.1 Single‐Ended Traveling Wave Method -- 3.4.2 Double‐Ended Traveling‐Wave Method -- 3.4.3 Error Sources -- 3.5 Exercise Problems -- 3.6 Summary -- Chapter 4 Error Sources in Impedance‐Based Fault Location -- 4.1 Power System Model -- 4.2 Input Data Errors -- 4.2.1 DC Offset -- 4.2.2 CT Saturation -- 4.2.3 Aging CCVTs -- 4.2.4 Open‐Delta VTs -- 4.2.5 Inaccurate Line Length -- 4.2.6 Untransposed Lines -- 4.2.7 Variation in Earth Resistivity -- 4.2.8 Non‐Homogeneous Lines.4.2.9 Incorrect Fault Type Selection -- 4.3 Application Errors -- 4.3.1 Load -- 4.3.2 Non‐Homogeneous System -- 4.3.3 Zero‐Sequence Mutual Coupling -- 4.3.4 Series Compensation -- 4.3.5 Three‐Terminal Lines -- 4.3.6 Radial Tap -- 4.3.7 Evolving Faults -- 4.4 Exercise Problems -- 4.5 Summary -- Chapter 5 Fault Location on Overhead Distribution Feeders -- 5.1 Impedance‐Based Methods -- 5.1.1 Loop Reactance Method -- 5.1.2 Simple Reactance Method -- 5.1.3 Takagi Method -- 5.1.4 Modified Takagi Method -- 5.1.5 Girgis et al. Method -- 5.1.6 Santoso et al. Method -- 5.1.7 Novosel et al. Method -- 5.2 Challenges with Distribution Fault Location -- 5.2.1 Load -- 5.2.2 Non‐Homogeneous Lines -- 5.2.3 Inaccurate Earth Resistivity -- 5.2.4 Multiple Laterals -- 5.2.5 Best Data for Fault Location: Feeder or Substation Relays -- 5.2.6 Distributed Generation -- 5.2.7 High Impedance Faults -- 5.2.8 CT Saturation -- 5.2.9 Grounding -- 5.2.10 Short Duration Faults -- 5.2.11 Missing Voltage -- 5.3 Exercise Problems -- 5.4 Summary -- Chapter 6 Distribution Fault Location With Current Only -- 6.1 Current Phasors Only Method -- 6.2 Current Magnitude Only Method -- 6.3 Short‐Circuit Fault Current Profile Method -- 6.4 Exercise Problems -- 6.5 Summary -- Chapter 7 System and Operational Benefits of Fault Location -- 7.1 Verify Relay Operation -- 7.2 Discover Erroneous Relay Settings -- 7.3 Detect Instrument Transformer Installation Errors -- 7.4 Validate Zero‐Sequence Line Impedance -- 7.5 Calculate Fault Resistance -- 7.6 Prove Short‐Circuit Model -- 7.7 Adapt Autoreclosing in Hybrid Lines -- 7.8 Detect the Occurrence of Multiple Faults -- 7.9 Identify Impending Failures and Take Corrective Action -- 7.10 Exercise Problems -- 7.11 Summary -- A Fault Location Suite in MATLAB -- A.1 Understanding the Fault Location Script -- References -- Index -- EULA."This book provides readers with up-to-date coverage of fault location algorithms in transmission and distribution networks. The algorithms will help readers track down the exact location of a fault in the shortest possible time. Furthermore, voltage and current waveforms recorded by digital relays, digital fault recorders, and other intelligent electronic devices contain a wealth of information. Knowledge gained from analysing the fault data can help system operators understand what happened, why it happened and how it can be prevented from happening again. The book will help readers convert such raw data into useful information and improve power system performance and reliability."--Provided by publisher.IEEE Press Electric fault locationPower transmissionElectric fault location.Power transmission.621.3192Das Swagata1217965Santoso SuryaAnanthan Sundaravaradan NavalpakkamMiAaPQMiAaPQMiAaPQBOOK9910830493303321Fault location on transmission and distribution systems3956622UNINA