10666nam 2200529 450 991083047920332120230629230843.01-119-76034-81-119-76028-31-119-76037-2(CKB)5180000000021107(MiAaPQ)EBC6938204(Au-PeEL)EBL6938204(EXLCZ)99518000000002110720221105d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierEnergy storage for modern power system operations /edited by Sandeep Dhundhara and Yajvender Pal VermaBeverly, Massachusetts ;Hoboken, New Jersey :Scrivener Publishing :Wiley,[2021]©20211 online resource (368 pages)Includes index.1-119-76033-X Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Introduction to Energy Storage Systems -- 1.1 Introduction -- 1.1.1 Basic Components of Energy Storage Systems -- 1.2 Types of Energy Storage Systems -- 1.2.1 Chemical Energy Storage System -- 1.2.2 Mechanical Energy Storage System -- 1.2.3 Electromagnetic Energy Storage System -- 1.2.4 Electrostatic Energy Storage System -- 1.2.5 Electrochemical Energy Storage System -- 1.2.6 Thermal Energy Storage System -- 1.3 Terminology Used in ESS -- 1.4 Applications of ESS -- 1.5 Comparative Analysis of Cost and Technical Parameters of ESSs -- 1.6 Analysis of Energy Storage Techniques -- 1.7 Conclusion -- References -- 2 Storage Technology Perspective in Modern Power System -- 2.1 Introduction -- 2.2 Significance of Storage Technologies in Renewable Integration -- 2.3 Overview of Current Developments in Electrical Energy Storage Technologies -- 2.4 Commercial Aspects of Energy Storage Technologies -- 2.5 Reducing the Costs of Storage Systems -- 2.6 Energy Storage Economics - A View Through Current Scenario -- 2.7 Implications for Researchers, Practitioners, and Policymakers -- 2.8 Regulatory Considerations - A Need for Reform -- 2.9 Discussion -- 2.10 Conclusions -- 2.11 Trends and Technological Modernizations - A Look Into What the Future Might Bring -- References -- 3 Virtual Inertia Provision Through Energy Storage Technologies -- 3.1 Introduction -- 3.2 Virtual Inertia-Based Frequency Control -- 3.2.1 Concept of Virtual Inertia -- 3.2.2 Virtual Inertia Emulation -- 3.3 Impact of Low System Inertia on Power System Voltage and Operation &amp -- Control Due to Large Share of Renewables -- 3.4 Control Methods for Inertia Emulation in RES-Based Power Systems -- 3.4.1 Control Methods Without ESS for Frequency Control.3.4.2 Control Methods with ESS for Frequency Control -- 3.4.2.1 Battery Energy Storage Systems (BESS) -- 3.4.2.2 Super Capacitors and Ultra-Capacitors -- 3.4.2.3 Flywheel Energy Storage System (FESS) -- 3.4.2.4 Hybrid Energy Storage System (HESS) -- 3.5 Challenges -- References -- 4 Energy Storage Systems for Electric Vehicles -- 4.1 Introduction -- 4.2 Energy Storage Systems for Electric Vehicle -- 4.3 Types of Electric Vehicles -- 4.3.1 Battery Electric Vehicle (BEV) -- 4.3.2 Hybrid Electric Vehicle (HEV) -- 4.3.3 Plug-In Hybrid Electric Vehicles (PHEV) -- 4.4 Review of Energy Storage Systems for Electric Vehicle Applications -- 4.4.1 Key Attributes of Battery Technologies -- 4.4.2 Widely Used Battery Technologies -- 4.4.3 Alternate Energy Storage Solutions -- 4.5 Electric Vehicle Charging Schemes -- 4.6 Issues and Challenges of ESSs in EV Applications -- 4.7 Recent Advancements in the Storage Technologies of EVs -- 4.8 Factors, Challenges and Problems in Sustainable Electric Vehicle -- 4.9 Conclusions and Recommendations -- References -- 5 Fast-Acting Electrical Energy Storage Systems for Frequency Regulation -- 5.1 Introduction -- 5.1.1 Significance of Fast-Acting Electrical Energy Storage (EES) System in Frequency Regulation -- 5.1.2 Capacitive Energy Storage (CES) -- 5.1.2.1 Basic Configuration of CES -- 5.1.2.2 CES Control Logic -- 5.1.3 Superconducting Magnetic Energy Storage (SMES) -- 5.1.3.1 Constructional and Working Details of SMES -- 5.1.3.2 Basic Configuration of SMES -- 5.1.3.3 SMES Block Diagram Presentation -- 5.1.3.4 Benefits Over Other Energy Storage Methods -- 5.1.4 Advantages of CES Over SMES [22, 23] -- 5.2 Case Study to Investigate the Impact of CES and SMES in Modern Power System -- 5.2.1 Literature Review -- 5.2.2 Modeling of the System Under Study -- 5.2.3 Control Approach.5.3 Impact of Fast-Acting EES Systems on the Frequency Regulation Services of Modern Power Systems -- 5.3.1 System Model-1 -- 5.3.2 System Model-2 -- 5.4 Conclusion -- Appendix A -- Power system data -- References -- 6 Solid-Oxide Fuel Cell and Its Control -- Abbreviations -- Symbols and Molecular Formulae -- Nomenclature -- 6.1 Introduction -- 6.2 Fuel Cells -- 6.2.1 Different Types of Fuel Cells -- 6.2.2 Advantages and Disadvantages -- 6.2.3 Applications in Modern Power System -- 6.3 Solid-Oxide Fuel Cell -- 6.3.1 Mathematical Modeling -- 6.3.3.1 Constant Voltage Control -- 6.3.3.2 Constant Fuel Utilization Control -- 6.3.2 Linearization -- 6.3.3 Control Schemes for Solid-Oxide Fuel Cell Based Power System -- 6.4 Illustration of a Case Study on Control of Grid-Connected SOFC -- 6.5 Recent Trend in Fuel Cell Technologies -- 6.5.1 Techno-Economic Comparison -- 6.5.2 Market and Policy Barriers -- 6.6 Summary and Future Scope -- Acknowledgement -- References -- 7 Lithium-Ion vs. Redox Flow Batteries - A Techno-Economic Comparative Analysis for Isolated Microgrid System -- 7.1 Introduction to Battery Energy Storage System -- 7.1.1 Lithium-Ion Battery -- 7.1.2 Redox Flow Batteries -- 7.2 Role of Battery Energy Storage System in Microgrids -- 7.3 Case Study to Investigate the Impact of Li-Ion and VRFB Energy Storage System in Microgrid System -- 7.3.1 System Modelling -- 7.3.2 Evaluation Criteria for a Microgrid System -- 7.3.3 Load and Resource Assessment -- 7.4 Results and Discussion -- 7.5 Conclusion -- References -- 8 Role of Energy Storage Systems in the Micro-Grid Operation in Presence of Intermittent Renewable Energy Sources and Load Growth -- 8.1 Introduction -- 8.1.1 Techniques and Classification of Energy Storage Technologies Used in Hybrid AC/DC Micro-Grids -- 8.1.2 Applications and Benefits of Energy Storage Systems in the Microgrid System.8.1.2.1.1 Renewable Energy Sources Integration -- 8.1.2.1.2 System Reliability -- 8.1.2.1.3 Voltage Control -- 8.1.2.1.4 Peak Load Shaving -- 8.1.2.1.5 Frequency Response -- 8.1.2.1.6 Emergency Back-Up/Black Start -- 8.1.3 Importance of Appropriate Configuration of Energy Storage System in Micro-Grid -- 8.1.3.1 Decentralized Control -- 8.1.3.2 Centralized Control -- 8.1.3.3 Coordinated Control -- 8.1.3.4 Topology of BESS and PCS -- 8.1.3.5 Battery Management System -- 8.2 Concept of Micro-Grid Energy Management -- 8.2.1 Concept of Micro-Grid -- 8.2.2 Benefits of Micro-Grids -- 8.2.3 Overview of MGEM -- 8.3 Modelling of Renewable Energy Sources and Battery Storage System -- 8.4 Uncertainty of Load Demand and Renewable Energy Sources -- 8.5 Demand Response Programs in Micro-Grid System -- 8.5.1 Modelling of Price Elasticity of Demand -- 8.5.2 Load Control in Time-Based Rate DR Program -- 8.5.3 Load Control in Incentive-Based DR Program -- 8.6 Economic Analysis of Micro-Grid System -- 8.7 Results and Discussions -- 8.7.1 Dispatch Schedule Without Demand Response -- 8.7.2 Dispatch Schedule with Demand Response -- 8.7.3 Micro-Grid Resiliency -- 8.7.4 BESS for Emergency DG Replacement -- 8.8 Conclusions -- List of Symbols and Indices -- References -- 9 Role of Energy Storage System in Integration of Renewable Energy Technologies in Active Distribution Network -- Nomenclature -- 9.1 Introduction -- 9.1.1 Background -- 9.1.2 Motivation and Aim -- 9.1.3 Related Work -- 9.1.4 Main Contributions -- 9.2 Active Distribution Network -- 9.3 Uncertainties Modelling of Renewable Energy Sources and Load -- 9.3.1 Uncertainty of Photovoltaic (PV) Power Generation -- 9.3.2 Uncertainty of Wind Power Generation -- 9.3.3 Voltage Dependent Load Modelling (VDLM) -- 9.3.4 Proposed Stochastic Variable Module for Uncertainties Modelling.9.3.5 Modelling of Energy Storage System -- 9.3.6 Basic Concept of Conservation Voltage Reduction -- 9.3.7 Framework of Proposed Two-Stage Coordinated Optimization Model -- 9.3.8 Proposed Problem Formulation -- 9.3.8.1 Investments Constraints -- 9.3.9 Proposed Solution Methodology -- 9.3.10 Simulation Results and Discussions -- 9.3.10.1 Simulation Platform -- 9.3.10.2 Data and Assumptions -- 9.3.10.3 Numerical Results and Discussions -- 9.3.10.4 Effect of Voltage Profile -- 9.3.10.5 Effect of Energy Losses and Consumption -- 9.3.10.6 Effect of Energy Not Served and Carbon Emissions -- 9.3.10.7 Performance of Proposed Hybrid Optimization Solver -- 9.3.11 Conclusion -- References -- 10 Inclusion of Energy Storage System with Renewable Energy Resources in Distribution Networks -- 10.1 Introduction -- 10.2 Optimal Allocation of ESSs in Modern Distribution Networks -- 10.2.1 ESS Allocation (Siting and Sizing) -- 10.2.2 ESS Allocation Methods -- 10.3 Applications of ESS in Modern Distribution Networks -- 10.3.1 ESS Applications at the Generation and Distribution Side -- 10.3.2 ESS Applications at the End-Consumer Side -- 10.4 Different Types of ESS Technologies Employed for Sustainable Operation of Power Networks -- 10.5 Case Study -- 10.5.1 Proposed Two-Layer Optimization Framework and Problem Formulation -- 10.5.1.1 Upper-Layer Optimization -- 10.5.1.2 Internal-Layer Optimization -- 10.5.1.3 Problem Constraints -- 10.5.1.4 Proposed Management Strategies for BESS Deployment -- 10.5.2 Results and Discussions -- 10.5.3 Conclusions -- 10.6 Future Research and Recommendations -- Appendix A -- Acknowledgement -- References -- Index -- Also of Interest -- Check out these other related titles from Scrivener Publishing -- EULA.Energy storageEnergy storageTechnological innovationsElectric power systemsEnergy storage.Energy storageTechnological innovations.Electric power systems.621.3126Dhundhara SandeepVerma Yajvender PalMiAaPQMiAaPQMiAaPQBOOK9910830479203321Energy storage for modern power system operations4009077UNINA