01080nam a2200313 i 450099100145049970753620020507193657.0950426s1980 uk ||| | eng 0521227461b10849208-39ule_instLE01312443ExLDip.to Matematicaeng514AMS 54E99QA611Naber, Gregory L.53142Topological methods in Euclidean spaces /Gregory L. NaberCambridge [Eng.] ; New York :Cambridge University Press,1980x, 230 p. :ill. ;24 cm.Bibliography: p. 222-223.Includes indexSpaces with rich structuresTopology.b1084920821-09-0628-06-02991001450499707536LE013 54E NAB11 (1980)12013000027661le013-E0.00-l- 03030.i1096024728-06-02Topological methods in Euclidean spaces918765UNISALENTOle01301-01-95ma -enguk 0101876nam 2200433 450 991083040830332120220118122028.01-119-43747-41-119-43760-11-119-43743-1(CKB)4100000011919501(MiAaPQ)EBC6606755(Au-PeEL)EBL6606755(PPN)261442805(OCoLC)1242018362(EXLCZ)99410000001191950120220118d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierLinear algebra /Michael L. O'LearyHoboken, New Jersey :Wiley,[2021]©20211 online resource (685 pages)1-119-43744-X "Although the history of solving linear equations is long, the early stages of what we today call linear algebra dates back to the late seventeenth century. Work first began by finding methods to solve systems of linear equations. Notatable mathematicians involved with this included Gottfried Wilhelm Leibniz, Gabriel Cramer, and Carl Friedrich Gauss. The mid-1800s saw the development of matrix algebra by Hermann Grassmann and Arthur Cayley afterwhich the subject evolved into a subdiscipline of abstract algebra. Although the field can be studied for its own sake, applications of linear algebra can be found in various subjects including computer science, probability, statistics, economics, physics, and cryptography."--Provided by publisher.Algebras, LinearAlgebras, Linear.512.5O'Leary Michael L.245555MiAaPQMiAaPQMiAaPQBOOK9910830408303321Linear algebra3986226UNINA