09857nam 22004813 450 991083028740332120240114090223.01-394-17294-X1-394-17293-1(MiAaPQ)EBC31064159(Au-PeEL)EBL31064159(EXLCZ)992957497690004120240114d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierAutomation in the Welding Industry Incorporating Artificial Intelligence, Machine Learning and Other Technologies1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (307 pages)Industry 5. 0 Transformation Applications SeriesPrint version: Moinuddin, Syed Quadir Automation in the Welding Industry Newark : John Wiley & Sons, Incorporated,c2024 9781394172412 Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction to Industry 5.0 -- 1.1 Introduction -- 1.2 Industry 4.0 -- 1.3 Industry 5.0 -- References -- Chapter 2 Advancements in Welding Technologies -- 2.1 Introduction -- 2.2 Quality of Weld Joint -- 2.3 Pulsed Current GMAW -- 2.4 P-GMAW Process Stability Factors -- 2.5 Suitable Pulse Parameters of Selection -- 2.6 Effect of Pulse Parameters -- 2.6.1 Weld Bead Geometry -- 2.6.2 Weld Dilution -- 2.6.3 Weld Microstructure -- 2.7 Pulsed Current GMAW Advances -- 2.8 Double-Pulsed GMAW -- 2.9 Synergic Control -- 2.10 Self-Regulating Control -- 2.11 Microcomputer Control -- 2.12 GMAW Shielding Gas Flow -- 2.13 Particle Image Velocimetry (PIV) -- 2.14 The Measurement of Oxygen (O2) Concentration -- 2.15 Spectroscopic Measurements of Plasma Temperature -- 2.16 P-GMAW Numeric Simulation -- 2.16.1 Approach-1 -- 2.16.2 Approach-II -- References -- Chapter 3 Automation in Welding Industries -- 3.1 Introduction -- 3.1.1 Types of Automatic Welding -- 3.1.2 Challenges of Automatic Welding -- 3.1.3 Benefits of Automatic Welding -- 3.2 Automation Trends -- 3.2.1 Production Monitoring -- 3.2.2 Adaptive Welding Advancements -- 3.2.3 Upstream Practices -- 3.2.4 Collaborative Technology -- 3.2.5 Easier Programming of Automation Systems -- 3.3 Plasma Welding -- 3.4 Laser Welding -- 3.5 Arc Welding -- 3.6 MIG Welding -- 3.7 Resistance Welding -- 3.8 Conclusions -- References -- Chapter 4 Digitalization of Welding Processes -- 4.1 Introduction -- 4.2 Techniques for Process Monitoring -- 4.2.1 Electrical Process Tests: Voltage and Current for Welding -- 4.2.2 Thermal Measurement -- 4.2.3 Optical Measurement -- 4.2.4 Acoustic Measurement -- 4.2.5 Measurement of Displacement and Velocity -- 4.2.6 Measurement of Force -- 4.3 Process Monitoring Applications.4.3.1 Measurement of Current and Voltage -- 4.3.2 Thermal Measurement -- 4.3.3 Optical Measurement -- 4.3.4 Acoustic Measurement -- 4.3.5 Displacement and Velocity Measurement -- 4.3.6 Measurement of Force -- 4.3.7 EMF Measurement -- 4.4 Future Directions -- References -- Chapter 5 AI and ML in Welding Technologies -- Nomenclature -- 5.1 Introduction -- 5.2 Enhancing the Welding Industry -- 5.3 Machine Learning Algorithm Types -- 5.4 Background of AI and ML -- 5.5 Weld Defects -- 5.6 Level of Weld Quality -- 5.6.1 Mining Industry -- 5.6.2 Challenges in ML Practice -- 5.7 Case Studies -- 5.7.1 Use of AI Programs to Obtain CCT Welding Diagrams -- 5.7.2 Use of Algorithms to Predict the Penetration Depth in Friction Stir Spot Welding -- 5.8 Feasibility of Online Inspection of Ultrasonic Weld Quality -- 5.9 Conclusions -- References -- Chapter 6 Digital Twin in Welding -- 6.1 Introduction -- 6.2 Friction Stir Welding -- 6.2.1 FSW Parameters -- 6.3 Defects in Friction Stir Welding -- 6.3.1 DT for FSW -- 6.4 Laser Welding -- 6.4.1 Heat Conduction Welding -- 6.4.2 Deep Penetration or Keyhole Welding -- 6.4.3 Weld Process Parameters -- 6.4.3 DT for Laser Welding -- 6.5 Summary -- References -- Chapter 7 IoT in Welding Industries -- 7.1 Introduction -- 7.2 Sensing and Analyzing Welding Data via the Internet of Things (IoT) -- 7.2.1 Electrical Information -- 7.2.2 Optical Information -- 7.3 Welding Manufacture Based on IoT -- 7.3.1 Example 1: Arc Quality Management with IoT -- 7.3.2 Example 2: Case Study on IoT-Enabled Molten Metal Temperature Sensing System for Welding -- 7.3.3 Example 3: IoT-Based Safety Monitoring System During Welding Operations -- 7.3.4 Example 4: IoT-Based Monitoring of Submerged Arc Welding Process -- 7.4 Conclusion -- References -- Chapter 8 VR and AR in Welding Technologies -- 8.1 Introduction -- 8.1.1 Virtual Reality (VR).8.1.2 Augmented Reality (AR) -- 8.1.3 Artificial Intelligence (AI) -- 8.1.4 Machine Learning (ML) -- 8.2 How Intelligent is AI When Coupled with VR/AR? -- 8.3 VR/AR Architecture -- 8.4 Welding Processes -- 8.5 Intelligent Welding Technology -- 8.6 Types of Intelligent Welding Processes -- 8.6.1 Types of Welding Positions -- 8.7 Automated Welding Examples -- 8.7.1 Computer Interface of Automated Welding Processes -- 8.8 Applications of VR and AR in Automated Welding -- 8.9 AI and ML for Visual Inspection of Welds -- 8.9.1 AI in Arc Welding -- 8.9.2 AI Detection of Welding Defects -- 8.9.3 VR/AR Welding Simulator -- 8.10 Limitations in the Existing State-of-the-Art Welding Techniques -- 8.10.1 Advantages of AR/VR -- 8.11 Conclusions -- References -- Chapter 9 Intelligent, Clean Cobot Arc Welding Cell -- 9.1 Chances for SMEs -- 9.1.1 Introduction and Goals -- 9.2 Parameters and Consumption Data -- 9.3 CO2 Footprint Methodology -- 9.4 Result Presentation -- 9.5 Conclusion -- Acknowledgments -- References -- Chapter 10 Welding-Based 3D, 4D, 5D Printing -- Nomenclature -- 10.1 Introduction -- 10.2 Differences Among 3DP, 4DP and 5DP -- 10.3 Materials Used in 3DP, 4DP and 5DP Processes -- 10.3.1 Additive Manufactured Metallic Components -- 10.4 Machinability of Welded Components -- 10.5 Concept of 4D and 5D Printing -- 10.6 FEM-Based Analysis -- 10.7 Applications -- 10.7.1 4D Printing Applications -- 10.7.2 3D Printing in the Aerospace Industry -- 10.7.3 3D Printing in Electronics -- 10.7.4 3D Printing in Electrochemical Industries -- 10.7.5 5D Printing in Dentistry -- 10.7.6 5D Printing in Orthopedics -- 10.8 Conclusions -- References -- Chapter 11 Welding and Joining of Novel Materials -- 11.1 Introduction -- 11.1.1 Concept of High Entropy Alloys (HEAs) -- 11.2 Core Effects -- 11.2.1 High Entropy Effect -- 11.2.2 Sluggish Diffusion Effect.11.2.3 Severe Lattice Distortion Effect -- 11.2.4 Cocktail Effect -- 11.2.5 Current Status of HEAs -- 11.3 Arc Welding Techniques for HEAs -- 11.4 Solid State Welding -- 11.4.1 Friction Stir Welding (FSW) -- 11.5 Explosive Welding -- 11.5.1 Soldering and Brazing -- 11.6 EBW and EBC of HEAs -- 11.7 Laser Welding of HEAs -- 11.8 Laser Cladding of HEAs -- 11.9 Conclusion and Summary -- References -- Chapter 12 Sustainability in Welding Industries -- 12.1 Introduction -- 12.2 Critical Factors for Sustainability of Welding -- 12.3 Adoptability of Sustainable Welding -- 12.4 New Welding Standards for Sustainability -- 12.5 Resource-Conserving Techniques -- 12.5.1 Sustainable Welding in Practice -- 12.5.2 Boosting Efficiency with Special Welding Processes -- 12.6 Sustainability in Welding Training -- 12.6.1 Sustainable Technologies for Thick Metal Plate Welding -- 12.7 5S Lean Strategy for a Sustainable Welding Process -- 12.7.1 Sustainability Assessment of Shielded Metal Arc Welding (SMAW) Process -- 12.8 A-TIG Welding: A Small Step Towards Sustainable Manufacturing -- 12.8.1 Weight Space Partitions-Based Sustainable Welding -- 12.8.2 Sustainability Assessment of Welding Processes -- 12.8.3 Sustainability in Manufacturing -- 12.9 Sustainability Indices -- 12.10 Conclusion -- References -- Chapter 13 Global Welding Market Growth -- 13.1 Introduction -- 13.1.1 Overview of Global Welding Products Market -- 13.2 Patrons of Global Welding Market -- 13.3 Welding Technologies in the Global Welding Market -- 13.4 Fluxes, Wires, Electrodes, and Fillers -- 13.5 Welding Market Dynamics -- 13.6 Manpower and Labor Challenges in Global Market -- 13.7 COVID-19's Impact on Global Welding Materials Market -- 13.8 New Opportunity in the Welding Market and Advanced Applications -- 13.9 Conclusions -- References.Chapter 14 Quality Assurance and Control in Welding and Additive Manufacturing -- 14.1 Introduction -- 14.2 Quality Issues in Welding -- 14.3 Quality Issues in 3D Printing -- 14.4 Conclusion -- References -- Chapter 15 Welding Practices in Industry 5.0: Opportunities, Challenges, and Applications -- 15.1 Introduction -- 15.2 Manufacturing Trends -- 15.3 Welding Technology -- 15.3.1 Classification of Welding -- 15.4 Variety of Materials Used by Welding for Industry 5.0 -- 15.4.1 Advantages of Welding -- 15.4.2 Applications -- 15.4.3 Automation -- 15.4.4 Welding-Based AM -- 15.4.5 Welding Trends in Aeronautic Industry -- 15.4.6 Robotic and Automated Welding -- 15.5 Virtual Reality (VR) for Welders -- 15.6 Challenges and Opportunities in Nuclear Reactor -- 15.7 Challenges of AM-Based Functionally Graded Materials Through LDED -- 15.8 Conclusion -- References -- Index -- EULA.Industry 5. 0 Transformation Applications SeriesMoinuddin Syed Quadir1715403Saheb Shaik Himam1680923Dewangan Ashok Kumar1715404Cheepu Murali Mohan1715405Balamurugan S1680925MiAaPQMiAaPQMiAaPQBOOK9910830287403321Automation in the Welding Industry4109998UNINA