05246nam 2200613 450 991083027720332120230721030214.01-280-85447-297866108544793-527-61003-03-527-60966-0(CKB)1000000000376196(EBL)482108(OCoLC)124040069(SSID)ssj0000206851(PQKBManifestationID)11189082(PQKBTitleCode)TC0000206851(PQKBWorkID)10229044(PQKB)11397078(MiAaPQ)EBC482108(MiAaPQ)EBC7026951(Au-PeEL)EBL7026951(EXLCZ)99100000000037619620140128d2007 uy| 0gerur|n|---|||||txtccrMultivariate Datenanalyse für die Pharma-, Bio- und Prozessanalytik : ein lehrbuch /Waltraud KesslerWeinheim :Wiley-VSH Verlag,2007.1 online resource (343 p.)Description based upon print version of record.3-527-31262-5 Includes bibliographical references and index.Multivariate Datenanalyse; Inhaltsverzeichnis; Vorwort; 1 Einführung in die multivariate Datenanalyse; 1.1 Was ist multivariate Datenanalyse?; 1.2 Datensätze in der multivariaten Datenanalyse; 1.3 Ziele der multivariaten Datenanalyse; 1.3.1 Einordnen, Klassifizierung der Daten; 1.3.2 Multivariate Regressionsverfahren; 1.3.3 Möglichkeiten der multivariaten Verfahren; 1.4 Prüfen auf Normalverteilung; 1.4.1 Wahrscheinlichkeitsplots; 1.4.2 Box-Plots; 1.5 Finden von Zusammenhängen; 1.5.1 Korrelationsanalyse; 1.5.2 Bivariate Datendarstellung - Streudiagramme; Literatur; 2 Hauptkomponentenanalyse2.1 Geschichte der Hauptkomponentenanalyse2.2 Bestimmen der Hauptkomponenten; 2.2.1 Prinzip der Hauptkomponentenanalyse; 2.2.2 Was macht die Hauptkomponentenanalyse?; 2.2.3 Grafische Erklärung der Hauptkomponenten; 2.2.4 Bedeutung der Faktorenwerte und Faktorenladungen (Scores und Loadings); 2.2.5 Erklärte Varianz pro Hauptkomponente; 2.3 Mathematisches Modell der Hauptkomponentenanalyse; 2.3.1 Mittenzentrierung; 2.3.2 PCA-Gleichung; 2.3.3 Eigenwert- und Eigenvektorenberechnung; 2.3.4 Berechnung der Hauptkomponenten mit dem NIPALS-Algorithmus; 2.3.5 Rechnen mit Scores und Loadings2.4 PCA für drei Dimensionen2.4.1 Bedeutung von Bi-Plots; 2.4.2 Grafische Darstellung der Variablenkorrelationen zu den Hauptkomponenten (Korrelation-Loadings-Plots); 2.5 PCA für viele Dimensionen: Gaschromatographische Daten; 2.6 Standardisierung der Messdaten; 2.7 PCA für viele Dimensionen: Spektren; 2.7.1 Auswertung des VIS-Bereichs (500-800 nm); 2.7.2 Auswertung des NIR-Bereichs (1100-2100 nm); 2.8 Wegweiser zur PCA bei der explorativen Datenanalyse; Literatur; 3 Multivariate Regressionsmethoden; 3.1 Klassische und inverse Kalibration; 3.2 Univariate lineare Regression3.3 Maßzahlen zur Überprüfung des Kalibriermodells (Fehlergrößen bei der Kalibrierung)3.3.1 Standardfehler der Kalibration; 3.3.2 Mittlerer Fehler - RMSE; 3.3.3 Standardabweichung der Residuen - SE; 3.3.4 Korrelation und Bestimmtheitsmaß; 3.4 Signifikanz und Interpretation der Regressionskoeffizienten; 3.5 Grafische Überprüfung des Kalibriermodells; 3.6 Multiple lineare Regression (MLR); 3.7 Beispiel für MLR - Auswertung eines Versuchsplans; 3.8 Hauptkomponentenregression (Principal Component Regression - PCR); 3.8.1 Beispiel zur PCR - Kalibrierung mit NIR-Spektren3.8.2 Bestimmen des optimalen PCR-Modells3.8.3 Validierung mit unabhängigem Testset; 3.9 Partial Least Square Regression (PLS-Regression); 3.9.1 Geschichte der PLS; 3.10 PLS-Regression für eine Y-Variable (PLS1); 3.10.1 Berechnung der PLS1-Komponenten; 3.10.2 Interpretation der P-Loadings und W-Loadings bei der PLS-Regression; 3.10.3 Beispiel zur PLS1 - Kalibrierung von NIR-Spektren; 3.10.4 Finden des optimalen PLS-Modells; 3.10.5 Validierung des PLS-Modells mit unabhängigem Testset; 3.10.6 Variablenselektion - Finden der optimalen X-Variablen3.11 PLS-Regression für mehrere Y-Variablen (PLS2)In vielen Fachgebieten, wie z. B. der Lebensmittelchemie, der pharmazeutischen oder biotechnologischen Industrie fallen immer mehr Daten an, die ausgewertet werden müssen. Klassische Verfahren gelangen hierbei schnell an ihre Grenzen. Die multivariate Datenanalyse beschäftigt sich mit Verfahren, mit denen man aus einer Fülle von Daten - wie z. B. Prozessdaten, Messdaten, Mikroarraydaten, Spektren - die wesentlichen, unabhängigen Informationen herausarbeiten kann. Es eröffnen sich somit ganz neue Möglichkeiten für eine effiziente und gleichzeitig umfangreiche Auswertung. Alle Methoden Multivariate analysisMultivariate analysis.519.535519.5352Kessler Waltraud1652391MiAaPQMiAaPQMiAaPQBOOK9910830277203321Multivariate Datenanalyse4003013UNINA