09251nam 2200457 450 991083022510332120230520185121.03-527-83631-43-527-83629-2(MiAaPQ)EBC7206095(Au-PeEL)EBL7206095(CKB)26177120900041(EXLCZ)992617712090004120230520d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSuperconducting radiofrequency technology for accelerators state of the art and emerging trends /Hasan PadamseeWeinheim, Germany :Wiley-VCH GmbH,[2023]©20231 online resource (398 pages)Print version: Padamsee, Hasan Superconducting Radiofrequency Technology for Accelerators Newark : John Wiley & Sons, Incorporated,c2023 9783527414093 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Update of SRF Fundamentals -- Chapter 1 Introduction -- Chapter 2 SRF Fundamentals Review -- 2.1 SRF Basics -- 2.2 Fabrication and Processing on Nb‐Based SRF Structures -- 2.2.1 Cavity Fabrication -- 2.2.2 Preparation -- 2.2.3 A Decade of Progress -- 2.3 SRF Physics -- 2.3.1 Zero DC Resistance -- 2.3.2 Meissner Effect -- 2.3.3 Surface Resistance and Surface Impedance in RF Fields -- 2.3.4 Nonlocal Response of Supercurrent -- 2.3.5 BCS -- 2.3.6 Residual Resistance -- 2.3.7 Smearing of Density of States -- 2.3.8 Ginzburg-Landau (GL) Theory -- 2.3.9 Critical Fields -- 2.3.10 Comparison Between Ginzburg-Landau and BCS -- 2.3.11 Derivation of Rs and Xs -- Part II High Q Frontier: Performance Advances and Understanding -- Chapter 3 Nitrogen‐Doping -- 3.1 Introduction -- 3.2 N‐Doping Discovery -- 3.3 Surface Nitride -- 3.4 Interstitial N -- 3.5 Electron Mean Free Path Dependence -- 3.5.1 LE‐µSR Measurements of Mean Free path -- 3.6 Anti‐Q‐Slope Origins from BCS Resistance -- 3.7 N‐Doping and Residual Resistance -- 3.7.1 Trapped DC Flux Losses -- 3.7.2 Residual Resistance from Hydride Losses -- 3.7.3 Tunneling Measurements -- 3.8 RF Field Dependence of the Energy Gap -- 3.9 Frequency dependence of Anti‐Q‐Slope -- 3.10 Theories for Anti‐Q‐Slope -- 3.10.1 Xiao Theory -- 3.10.2 Gurevich Theory -- 3.10.3 Nonequilibrium Superconductivity -- 3.10.4 Two‐Fluid Model‐Based on Weak Defects -- 3.11 Quench Field of N‐Doped Cavities -- 3.12 Evolution and Comparison of N‐doping Recipes -- 3.13 High Q and Gradient R&amp -- D Program for LCLS‐HE -- 3.14 N‐Doping at Other Labs -- 3.15 Summary of N‐doping -- Chapter 4 High Q via 300 °C Bake (Mid‐T‐Bake) -- 4.1 A Surprise Discovery -- 4.2 Similarities to N‐Doping -- 4.3 Mid‐T Baking at Other Labs -- 4.4 The Low‐Field Q‐Slope (LFQS) and 340 °C Baking Cures.4.5 Losses at Very Low Fields -- 4.6 Losses from Two‐Level Systems (TLS) -- 4.7 Eliminating TLS Losses -- Chapter 5 High Q\stquote s from DC Magnetic Flux Expulsion -- 5.1 Trapped Flux Losses, Sensitivity -- 5.2 Trapped Flux Sensitivity Models -- 5.3 Vortex Physics -- 5.4 Calculation of Sensitivity to Trapped Flux -- 5.5 Dependence of Sensitivity on RF Field Amplitude -- 5.6 DC Magnetic Flux Expulsion -- 5.6.1 Fast versus Slow‐Cooling Discovery -- 5.6.2 Thermoelectric Currents -- 5.7 Cooling Rates for Flux Expulsion -- 5.8 Flux Expulsion Patterns -- 5.9 Geometric Effects - Flux Hole -- 5.10 Flux Trapping With Quench -- 5.11 Material Quality Variations -- 5.12 Modeling Flux Trapping From Pinning Variations -- Part III High Gradient Frontier: Performance Advances and Understanding -- Chapter 6 High‐Field Q Slope (HFQS) - Understanding and Cures -- 6.1 HFQS Summary -- 6.2 HFQS in Low‐β Cavities -- 6.3 Deconvolution of RBCS and Rres -- 6.4 Depth of Baking Effect -- 6.4.1 From Anodization -- 6.4.2 From HF Rinsing -- 6.4.3 Depth of Magnetic Field Penetration by LE‐μSR -- 6.5 Role of the Oxide Layer and Role of N‐Infusion -- 6.6 SIMS Studies of O, H, and OH Profiles -- 6.7 Hydrogen Presence in HFQS -- 6.8 TEM Studies on Hydrides -- 6.9 Niobium-hydrogen Phase Diagram -- 6.10 H Enrichment at Surface -- 6.11 Q‐disease Review -- 6.12 Visualizing Niobium Hydrides -- 6.12.1 Cold‐stage Confocal Microscopy -- 6.12.2 Cold‐stage Atomic Force Microscopy (AFM) -- 6.13 Model for HFQS - Proximity Effect Breakdown of Nano‐hydrides -- 6.13.1 Baking Benefit and Proximity Effect Model -- 6.14 Positron Annihilation Studies of HFQS and Baking Effect -- 6.15 Point Contact Tunneling Studies of HFQS and Baking Effect -- Chapter 7 Quest for Higher Gradients: Two‐Step Baking and N‐Infusion -- 7.1 Two‐Step Baking -- 7.2 Subtle Effects of Two‐Step Baking - Bifurcation.7.2.1 Bifurcation Reduction -- 7.3 N‐Infusion at 120 °C -- 7.4 N‐Infusion at Medium Temperatures -- 7.5 Unifying Quench Fields -- 7.6 Quench Detection by Second Sound in Superfluid Helium -- Chapter 8 Improvements in Cavity Preparation -- 8.1 Comparisons of Cold and Warm Electropolishing Methods -- 8.2 Chemical Soaking -- 8.3 Optical Inspection System and Defects Found -- 8.4 Robotics in Cavity Preparation -- 8.5 Plasma Processing to Reduce Field Emission -- Chapter 9 Pursuit of Higher Performance with Alternate Materials -- 9.1 Nb Films on Cu Substrates -- 9.1.1 Direct Current Magnetron Sputtering -- 9.1.2 DC‐bias Diode Sputtering at High Temperature (400-600 °C) -- 9.1.3 Seamless Cavity Coating -- 9.1.4 Nb-Cu Films by ECR -- 9.1.5 Nb-Cu Films via High‐Power Impulse Magnetron Sputtering (HIPIMS) -- 9.2 Alternatives to Nb -- 9.2.1 Nb3Sn -- 9.2.2 MgB2 -- 9.2.3 NbN and NbTiN -- 9.3 Multilayers -- 9.3.1 SIS\stquote Structures -- 9.3.2 Theoretical Estimates -- 9.3.3 Results -- 9.3.4 SS\stquote Structures -- 9.4 Summary -- Part IV Applications -- Chapter 10 New Cavity Developments -- 10.1 Crab Cavities for LHC High Luminosity -- 10.2 Short‐Pulse X‐Rays (SPX) System for the APS Upgrade -- 10.3 QWR Cavity for Acceleration -- 10.4 Traveling Wave Structure Development -- Chapter 11 Ongoing Applications -- 11.1 Overview -- 11.2 Low‐Beta Accelerators for Nuclear Science and Nuclear Astrophysics -- 11.2.1 ATLAS at Argonne -- 11.2.2 ISAC and ISAC‐II at TRIUMF -- 11.2.3 SPIRAL II at GANIL -- 11.2.4 HIE ISOLDE -- 11.2.5 RILAC at RIKEN -- 11.2.6 SPES Upgrade of ALPI at INFN -- 11.2.7 FRIB at MSU -- 11.2.8 RAON -- 11.2.9 Spoke Resonator Structure Developments to Avoid Multipacting -- 11.2.10 JAEA Upgrade -- 11.2.11 HELIAC -- 11.2.12 SARAF -- 11.2.13 HIAF at IMP -- 11.2.14 IFMIF -- 11.3 High‐Intensity Proton Accelerators -- 11.3.1 SNS -- 11.3.2 ESS.11.3.3 Accelerator Driven Systems (CADS) -- 11.3.4 CiADS (China Initiative Accelerator Driven System) -- 11.3.5 Japan Atomic Energy Agency (JAEA) - ADS -- 11.3.6 High‐Intensity Proton Accelerator Development in India -- 11.3.7 PIP‐II and Beyond -- 11.4 Electrons for Light Sources - Linacs -- 11.4.1 European X‐ray Free Electron Laser (EXFEL) -- 11.4.2 Linac Coherent Light Source LCLS‐II and LCLS‐HE (LCLS‐High Energy) -- 11.4.3 Shanghai Coherent Light Facility (SCLF) SHINE -- 11.4.4 Institute of Advanced Science Facilities (IASF) -- 11.4.5 Polish Free‐Electron Laser POLFEL -- 11.5 Electrons for Storage Ring Light Sources -- 11.5.1 High‐Energy Photon Source (HEPS) -- 11.5.2 Taiwan Photon Source (TPS) -- 11.5.3 Higher Harmonic Cavities for Storage Rings Chaoen WANG, NSRRC, Taiwan -- 11.5.4 BNL -- 11.6 Electrons in Energy Recovery Linacs (ERL) for Light Sources &amp -- Electron-Ion Colliders -- 11.6.1 Prototyping ERL Technology at Cornell -- 11.6.2 KEK ERLs -- 11.6.3 Light‐House Project for Radiopharmaceuticals -- 11.6.4 Peking ERL -- 11.6.5 Berlin ERL -- 11.6.6 MESA ERL -- 11.6.7 SRF Photo‐injectors for ERLs -- 11.7 Electrons for Nuclear Physics, Nuclear Astrophysics, Radio‐Isotope Production -- 11.7.1 CEBAF at Jefferson Lab -- 11.7.2 ARIEL at TRIUMF -- 11.7.3 ERL for LHeC at CERN -- 11.8 Crab Cavities for LHC High Luminosity -- 11.9 Ongoing and Near‐Future Projects Summary -- Chapter 12 Future Prospects for Large‐Scale SRF Applications -- 12.1 The International Linear Collider (ILC) for High‐Energy Physics -- 12.2 Future Circular Collider FCCee -- 12.3 China Electron-Positron Collider, CEPC -- Chapter 13 Quantum Computing with SRF Cavities -- 13.1 Introduction to Quantum Computing -- 13.2 Qubits -- 13.3 Superposition and Coherence -- 13.4 Entanglement -- 13.5 2D SRF Qubits -- 13.6 Josephson Junctions.13.7 Dilution Refrigerator for Milli‐Kelvin Temperatures -- 13.8 Quantum Computing Examples -- 13.9 3D SRF Qubits -- 13.10 Cavity QED Quantum Processors and Memories -- References -- List of Symbols -- List of Acronyms -- Index -- EULA.Particle acceleratorsParticle accelerators.410Padamsee Hasan770724MiAaPQMiAaPQMiAaPQBOOK9910830225103321Superconducting radiofrequency technology for accelerators4021221UNINA