10864nam 2200517 450 991083020760332120231110213148.01-119-25174-51-119-25176-1(CKB)4330000000009636(MiAaPQ)EBC7168958(Au-PeEL)EBL7168958(EXLCZ)99433000000000963620230507d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierThermal energy management in vehicles /Gerard Olivier, Vincent Lemort, Georges de PelsemaekerHoboken, New Jersey :John Wiley & Sons, Inc.,[2023]©20231 online resource (355 pages)Automotive 1-119-25175-3 Includes bibliographical references and index.Cover -- Title Page -- Copyright -- Contents -- Acknowledgments -- Nomenclature List of Abbreviations -- About the Companion Website -- Introduction -- Chapter 1 Fundamentals -- 1.1 Introduction -- 1.2 Fundamental Definitions in Thermodynamics -- 1.2.1 System, Surroundings, and Universe -- 1.2.2 Properties -- 1.2.3 Process -- 1.2.4 Energy -- 1.2.5 Heat -- 1.2.6 Work -- 1.2.6.1 Mechanical Forms of Work -- 1.2.6.2 Nonmechanical Forms of Work -- 1.2.7 Enthalpy -- 1.3 Fluids -- 1.3.1 Pure and Pseudo‐Pure Fluids -- 1.3.2 Liquid-Vapor Phase Change for a Pure or Pseudo‐Pure Fluid -- 1.3.3 Computing the Properties of Pure and Pseudo‐Pure Fluids -- 1.3.3.1 Phase Rule -- 1.3.3.2 The Equations of State Relating P, T, and v (Relation Between Measurable Properties) -- 1.3.3.3 Computing Non‐Measurable Properties (u, h, and s) in General Case of Real Pure Fluids -- 1.3.3.4 Computing Non‐measurable Properties (u, h, and s) in the Specific Case of Ideal Fluids -- 1.3.4 Fluids Commonly Used in Automotive Applications -- 1.3.4.1 Oil -- 1.3.4.2 Coolant -- 1.3.4.3 Refrigerant -- 1.3.4.4 Humid Air -- 1.4 Heat Transfers -- 1.4.1 Conduction -- 1.4.2 Convection -- 1.4.2.1 Forced Convection -- 1.4.2.2 Natural Convection -- 1.4.2.3 Mixed Forced and Natural Convection -- 1.4.2.4 Sensible and Latent Heat Transfer by Convection -- 1.4.2.5 Convection Heat Transfer Rates -- 1.4.2.6 Laminar and Turbulent Regimes -- 1.4.2.7 Convection Heat Transfer Coefficients -- 1.4.3 Radiation -- 1.4.3.1 Emitted Radiation -- 1.4.3.2 Incident Radiation -- 1.4.3.3 Kirchhoff's Law and the Gray Surfaces -- 1.4.3.4 Radiation Exchange Between Surfaces -- 1.5 First Law of Thermodynamics -- 1.5.1 Closed System -- 1.5.2 Open System -- 1.5.2.1 Mass Balance -- 1.5.2.2 Energy Balance -- 1.6 Second Law of Thermodynamics -- 1.6.1 Concepts and Definitions -- 1.6.1.1 Heat Reservoir, Source, and Sink.1.6.1.2 Heat Engines -- 1.6.1.3 Refrigerators and Heat Pumps -- 1.6.2 Kelvin Planck and Clausius Statements of the Second Law -- 1.6.3 Reversible Processes -- 1.6.4 Ideal Heat Engines, Refrigerators, and Heat Pumps -- 1.6.5 Entropy -- 1.7 Flows in Hydraulic Circuits -- 1.8 Heat Exchangers -- 1.8.1 Classification of Heat Exchangers -- 1.8.1.1 Classification According to the Mechanism of Energy Transfer -- 1.8.1.2 Classification According to the Phases of Both Fluids -- 1.8.1.3 Classification According to the Flow Arrangement -- 1.8.1.4 Classification According to the Pass Arrangement -- 1.8.1.5 Classification According to the Type of Construction -- 1.8.2 Energy Balance Across a Heat Exchanger -- 1.8.3 Performance -- 1.8.3.1 Thermal Performance -- 1.8.3.2 Hydraulic Performance -- References -- Chapter 2 Internal Combustion Engine Thermal Management -- 2.1 Introduction -- 2.2 Fundamentals of Internal Combustion Engines -- 2.2.1 Characteristics of the Internal Combustion Engines -- 2.2.2 Four‐Stroke Engine Cycle -- 2.2.3 Combustion Process in the Engines -- 2.2.3.1 Combustion -- 2.2.3.2 Spark‐Ignition Engine (SI Engine) -- 2.2.3.3 Compression‐Ignition Engine (CI Engine) -- 2.2.4 Pollutant Emissions -- 2.2.4.1 Driving Cycles and Pollutant Emissions -- 2.2.4.2 Pollutants -- 2.2.4.3 Trade‐off and Technological Levers -- 2.2.5 Energy Analysis -- 2.2.5.1 Energy Conversion Processes in Engines -- 2.2.5.2 Engine Overall Energy Balance -- 2.2.5.3 Engine Overall Energy Performance Indicators -- 2.2.6 Quantification of the Major Heat Transfers in ICEs -- 2.2.6.1 Heat Transfer Between Gases and Engine Walls -- 2.2.6.2 Heat Transfer Between Coolant and Engine Walls -- 2.2.6.3 Overall Heat Transfer Between the Gas and Coolant -- 2.2.6.4 Heat Transfer with the Surroundings -- 2.3 Engine Cooling and Heating -- 2.3.1 Purpose of Engine Cooling and Heating.2.3.2 Working Principle of Engine Cooling and Heating Systems -- 2.3.3 Circulation of the Coolant through the Engine -- 2.3.4 Radiator -- 2.3.4.1 Purpose of the Radiator -- 2.3.4.2 Technologies of Radiators -- 2.3.4.3 Flow Configurations in Radiators -- 2.3.5 Expansion Tanks -- 2.3.6 Thermostat -- 2.3.6.1 Purpose of the Thermostat -- 2.3.6.2 Working Principle of a Thermostat -- 2.3.6.3 Technologies of Thermostats -- 2.3.7 Heating Systems -- 2.4 Oil Cooling -- 2.4.1 Purpose of Oil Cooling and Heating -- 2.4.2 Working Principle of Oil Cooling and Heating Systems -- 2.4.3 Technologies of Oil Coolers -- 2.4.3.1 Air‐to‐Oil Coolers -- 2.4.3.2 Coolant‐to‐Oil Coolers -- 2.4.4 Oil Temperature Control -- 2.5 Charge Air Cooling (CAC) -- 2.5.1 Purpose of Charge Air Cooling and Forced Induction -- 2.5.2 Working Principle and Technologies of Forced Induction -- 2.5.2.1 Turbochargers -- 2.5.2.2 Superchargers -- 2.5.2.3 Electric Superchargers -- 2.5.2.4 Compound Forced Induction -- 2.5.3 Working Principle and Architectures of Charge Air Cooling -- 2.5.3.1 Charge Air Cooling by Air -- 2.5.3.2 Charge Air Cooling by Coolant -- 2.5.3.3 Charge Air Cooling by Refrigerant -- 2.5.4 Technologies of Charge Air Coolers -- 2.5.4.1 Air‐Cooled Charge Air Coolers -- 2.5.4.2 Water‐Cooled Charge Air Coolers -- 2.6 Exhaust Gas Recirculation (EGR) Cooling -- 2.6.1 Purpose of EGR and EGR Cooling -- 2.6.2 EGR Working Principle -- 2.6.3 Exhaust Gas Recirculation Architectures -- 2.6.3.1 High‐Pressure EGR -- 2.6.3.2 Low‐Pressure EGR -- 2.6.4 Technologies of Exhaust Gas Recirculation Coolers (EGRC) -- 2.6.4 Additional Data -- 2.6.4 Solution -- 2.7 Front‐End Module -- 2.7.1 Purpose of the Front‐End Module -- 2.7.2 Working Principle of the Front‐End Module -- 2.7.2.1 Heat Exchangers Configuration -- 2.7.2.2 Aeraulics -- 2.7.2 Solution -- 2.7.2 Results.2.7.3 Technologies of Components in the Front‐End Module -- 2.7.3.1 Fan System -- 2.7.3.2 Active Grille Shutters -- 2.8 Engine Waste Heat Recovery -- 2.8.1 Exhaust Heat Recovery System (EHRS) -- 2.8.2 (Organic) Rankine Cycle Power Systems -- 2.8.2 Solution -- 2.8.2 Results (for question 1 and 2) -- 2.8.3 Other Investigated Technologies -- References -- Chapter 3 Cabin Climate Control -- 3.1 Introduction -- 3.2 Thermal Comfort -- 3.2.1 Definition of Thermal Comfort -- 3.2.2 Human Thermo‐Physiology -- 3.2.2.1 Homeothermy -- 3.2.2.2 Body Energy Balance -- 3.2.2.3 Skin Sensible Losses -- 3.2.2.4 Skin Latent Losses -- 3.2.2.5 Respiratory Losses -- 3.2.2.6 Criteria to Meet to Achieve Thermal Comfort -- 3.2.3 Description of Vehicle Indoor Climate -- 3.2.3.1 Mean Radiant Temperature -- 3.2.3.2 Operative Temperature -- 3.2.3.3 Equivalent Temperature -- 3.2.3.4 Local Equivalent Temperature -- 3.2.3.5 Whole Body Equivalent Temperature -- 3.2.3.6 Control of Vehicle Indoor Climate -- 3.2.3.7 Transient Evolution of the Indoor Climate -- 3.2.3.8 Air Stratification -- 3.2.4 Evaluation of Thermal Comfort -- 3.2.4.1 PMV Approach -- 3.2.4.2 Human Subject Trials -- 3.3 Cabin Thermal Loads -- 3.3.1 Outdoor Climate -- 3.3.1.1 Solar Radiation -- 3.3.1.2 Atmospheric Radiation -- 3.3.2 Energy Transfer Mechanisms Involved in a Vehicle Cabin -- 3.3.3 Heat Transfer Through the Cabin Body -- 3.3.3.1 Heat Transfers at the Cabin Body Outdoor Surface -- 3.3.3.2 Heat Transfer and Storage Through the Cabin Body Materials -- 3.3.3.3 Heat Transfers at the Cabin Body Indoor Surface -- 3.3.3.4 Heat Transfer Through the Cabin Body in the Steady‐State Regime -- 3.3.4 Heat Transfer Through the Glazing -- 3.3.4.1 Optical Properties of Glazing -- 3.3.4.2 Advanced Glazing Technologies -- 3.3.5 Ventilation -- 3.3.6 Infiltration -- 3.3.7 Internal Gains -- 3.3.7.1 Occupants.3.3.7.2 Other Internal Gains -- 3.3.8 Other Energy Transfer Mechanisms -- 3.3.9 Lumped Modeling Approach -- 3.3.9.1 Energy Balance on the Cabin Body -- 3.3.9.2 Energy Balance on the Cabin Glazing -- 3.3.9.3 Energy Balance on the Cabin Internal Masses -- 3.3.9.4 Mass and Energy Balances on the Cabin Air, Water, and CO2 -- 3.4 Distribution of Thermal Energy Through the Cabin -- 3.4.1 HVAC Unit Components and Working Principle -- 3.4.2 Cabin Air Recirculation -- 3.4.3 HVAC Unit Operating Modes -- 3.4.3.1 Ventilation -- 3.4.3.2 Cooling -- 3.4.3.3 Heating -- 3.4.3.4 Demisting and Defrosting -- 3.4.3.5 Ventilation and Heating -- 3.4.3.6 Temperature and Flow Rate of the Air Flow Pulsed by the HVAC Unit -- 3.4.4 Cabin Air Quality -- 3.5 Production of Cooling Capacity -- 3.5.1 Working Principle of a Vapor‐Compression Refrigerator -- 3.5.1.1 Evaporator -- 3.5.1.2 Compressor -- 3.5.1.3 Condenser -- 3.5.1.4 Throttling Device -- 3.5.2 Integration of the Air‐Conditioning Loop into the Vehicle -- 3.5.3 Compressor -- 3.5.3.1 Mechanical Versus Electrical Compressors -- 3.5.3.2 Compressor Capacity -- 3.5.3.3 Piston Compressors -- 3.5.3.4 Sliding Vane Compressors -- 3.5.3.5 Scroll Compressors -- 3.5.3.6 Expression of the Compressor Displaced Mass Flow Rate -- 3.5.3.7 Expression of the Compressor Power -- 3.5.3.8 Oil Circulation Ratio -- 3.5.4 Evaporator -- 3.5.4.1 Air‐Heated Evaporators -- 3.5.4.2 Water‐Heated Evaporators ("Chillers") -- 3.5.5 Condenser -- 3.5.5.1 Air‐Cooled Condensers -- 3.5.5.2 Water‐Cooled Condensers -- 3.5.6 Throttling Device -- 3.5.6.1 Thermostatic Expansion Valve (TXV) -- 3.5.6.2 Electronic Expansion Valve (EXV) -- 3.5.6.3 Orifice Tube (OT) -- 3.5.7 Receiver, Accumulator, Drier, and Filter -- 3.5.7.1 In‐line Receiver -- 3.5.7.2 Integrated Receiver -- 3.5.7.3 Accumulator -- 3.5.8 Internal Heat Exchanger -- 3.5.9 R744 (CO2) as Working Fluid.3.5.9.1 Internal Heat Exchanger with R744.Automotive AutomobilesMotorsCooling systemsAutomobilesMotorsCooling systems.629.256Olivier Gerard1699938Lemort Vincentde Pelsemaeker GeorgesMiAaPQMiAaPQMiAaPQBOOK9910830207603321Thermal energy management in vehicles4082589UNINA