02081nam 2200637Ia 450 991045635420332120200520144314.00-472-09838-11-282-59750-797866125975030-472-02275-X10.3998/mpub.11890(CKB)2520000000006845(OCoLC)608897158(CaPaEBR)ebrary10371948(SSID)ssj0000426359(PQKBManifestationID)11257647(PQKBTitleCode)TC0000426359(PQKBWorkID)10372883(PQKB)10979498(MiAaPQ)EBC3414702(MiU)10.3998/mpub.11890(Au-PeEL)EBL3414702(CaPaEBR)ebr10371948(CaONFJC)MIL259750(OCoLC)816387047(EXLCZ)99252000000000684520050727e20052003 uy 0engurcn|||||||||txtccrThe psychological assessment of political leaders[electronic resource] with profiles of Saddam Hussein and Bill Clinton /edited by Jerrold M. PostAnn Arbor University of Michigan Pressc20051 online resource (477 p.) Bibliographic Level Mode of Issuance: Monograph0-472-06838-5 Includes bibliographical references (p. 413-441) and index.Political leadershipPsychological aspectsPoliticiansPsychologyHeads of statePsychologyElectronic books.Political leadershipPsychological aspects.PoliticiansPsychology.Heads of statePsychology.320/.01/9Post Jerrold M1038080Michigan Publishing (University of Michigan)MiAaPQMiAaPQMiAaPQBOOK9910456354203321The psychological assessment of political leaders2459439UNINA05553nam 22007094a 450 991083012940332120170809164610.01-280-33960-897866103396000-470-01715-51-60119-497-80-470-01714-7(CKB)1000000000357341(EBL)244862(OCoLC)71554132(SSID)ssj0000071718(PQKBManifestationID)11109942(PQKBTitleCode)TC0000071718(PQKBWorkID)10091563(PQKB)11173417(MiAaPQ)EBC244862(PPN)241846838(EXLCZ)99100000000035734120050629d2005 uy 0engur|n|---|||||txtccrDesigning indoor solar products[electronic resource] photovoltaic technologies for AES /Julian F. RandallHoboken, N.J. J. Wiley & Sonsc20051 online resource (199 p.)Description based upon print version of record.0-470-01661-2 Includes bibliographical references (p. [161]-172) and index.DESIGNING INDOOR SOLAR PRODUCTS; Contents; About the Author; Preface; Acknowledgements; Introduction; 1 State of the Art; 1.1 Introduction; 1.2 Low-power Energy Sources; 1.3 Intellectual Property Rights; 1.3.1 Methodology; 1.3.2 Results; 1.3.3 Conclusion; 1.4 IPV Taxonomies; 1.4.1 Product Use Taxonomy; 1.4.2 Function (or Circuit) Taxonomy; 1.4.3 Radiant Energy Application Taxonomy; 1.4.4 Mean Energy Taxonomy; 1.5 IPV Gaps in Knowledge; 1.5.1 Radiant Energy Available; 1.5.2 PV Solar Cells; 1.5.3 Charge Storage; 1.5.4 Energy Source Guidelines; 1.5.5 Applications; 1.6 Conclusion2 Engineering Design2.1 Introduction; 2.2 Defining Design; 2.3 Trends in Engineering Design; 2.4 Life Cycle Methods; 2.4.1 Introduction; 2.4.2 Definition; 2.4.3 LCA for IPV Designers; 2.4.4 LCA in IPV Design; 2.4.5 Designer Responsibility; 2.4.6 Summary; 2.5 Conclusion; 3 Radiant Energy Indoors; 3.1 Introduction; 3.2 Physics of Buildings; 3.2.1 Radiant Energy; 3.2.2 Radiant Energy Spectra; 3.2.3 Basic Optical Parameters; 3.3 Photometric Characterisation; 3.3.1 Characterisation Methodology Issues; 3.3.2 Daylight Factor; 3.3.3 Nearby Obstacle Aspect Ratio; 3.3.4 Glazing/Floor Ratio3.3.5 Lighting Recommendations3.4 Radiometric Characterisations; 3.4.1 Obstacles; 3.4.2 Window Transmission; 3.4.3 IPV Location; 3.4.4 IPV Cell Orientation; 3.4.5 Further Profiles: Buildings, Users and Applications; 3.5 Computer Simulation; 3.6 Discussion; 3.6.1 Summary of Parameters; 3.6.2 IPV Designer Recommendations; 3.7 Conclusion; 3.8 Future Work; 3.9 Further Reading; 4 Fundamentals of Solar Cells; 4.1 Introduction; 4.2 Brief History of Solar Collectors and PV; 4.2.1 The 'Selenium Years'; 4.2.2 The 'Silicon Years'; 4.2.3 History of IPV; 4.2.4 IPV Today; 4.3 Photonic Semiconductors4.3.1 What is a Semiconductor?4.3.2 Photonic Semiconductor Properties; 4.3.3 Solar Cell Categories; 4.4 Photovoltaic Technology; 4.4.1 Electrical Efficiency Calculation; 4.4.2 Fill Factor; 4.4.3 Short-circuit Current; 4.4.4 Open-circuit Voltage; 4.4.5 Power Curve; 4.5 Suboptimal Solar Cell Efficiency; 4.5.1 Optical Issues; 4.5.2 Material Quality Issues; 4.5.3 Parasitic Resistance; 4.5.4 Efficiency Losses Summary; 4.6 IPV Material Technologies; 4.6.1 Spectral Response; 4.6.2 Amorphous Silicon Thin Film; 4.6.3 Polycrystalline Thin Film; 4.6.4 Conventional Silicon Cell4.6.5 Other PV Technologies4.6.6 Thin-film Modules; 4.7 Efficiency Improvements; 4.7.1 Current and I(SC); 4.7.2 Voltage and V(OC); 4.7.3 Fill Factor; 4.7.4 Concentration; 4.8 Conclusion; 4.9 Further Reading; 5 Solar Cells for Indoor Use; 5.1 Introduction; 5.2 Technology Performance at Indoor Light Levels; 5.2.1 Experimental Procedure; 5.2.2 Results; 5.2.3 Efficiency with Intensity; 5.2.4 Spectral Response; 5.3 Indoor Light Level Model Presentation; 5.3.1 Phenomenological Model; 5.3.2 Heuristic Model; 5.3.3 Technology-specific Models; 5.4 Discussion; 5.5 Designing PV Modules for Indoor Use5.5.1 Transparent Conductive OxidePhotovoltaic technology - or the direct conversion of light into electricity - is the fastest growing means of electricity generation today, however it is generally used outdoors. Relatively little attention has been focused on the many obstacles to overcome when designing efficient indoor products. As a result, indoor products are more often than not limited to low power. Designing Indoor Solar Products bridges this gap by showing where AES (Ambient Energy Systems) based on photovoltaic cells may be used for higher power devices. Motivated by both financial and ecological arguments, Solar cellsPhotovoltaic power generationSustainable buildingsBuildingsElectric equipmentEnergy conservationSolar cells.Photovoltaic power generation.Sustainable buildings.BuildingsElectric equipment.Energy conservation.621.31/244621.31224Randall Julian F964260MiAaPQMiAaPQMiAaPQBOOK9910830129403321Designing indoor solar products2187063UNINA