10947nam 2200517 450 991083005080332120230916032731.01-119-86563-81-119-86562-X(MiAaPQ)EBC30727297(Au-PeEL)EBL30727297(EXLCZ)992814124820004120230916d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMetal oxide nanocomposite thin films for optoelectronic device applications /edited by Rayees Ahmad Zargar1st ed.Hoboken, Beverly, NJ :John Wiley & Sons, Inc.,[2023]©20231 online resource (426 pages)Print version: Zargar, Rayees Ahmad Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications Newark : John Wiley & Sons, Incorporated,c2023 9781119865087 Includes bibliographical references and index.Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Nanotechnology -- Chapter 1 Synthesis and Characterization of Metal Oxide Nanoparticles/Nanocrystalline Thin Films for Photovoltaic Application -- 1.1 Present Status of Power Generation Capacity and Target in India -- 1.2 Importance of Solar Energy -- 1.3 Evolution in Photovoltaic Cells and their Generations -- 1.3.1 First Generation Photovoltaic Cell -- 1.3.2 Second-Generation Photovoltaic Cell -- 1.3.3 Third Generation Photovoltaic Cell -- 1.3.4 Fourth Generation Photovoltaic Cell -- 1.4 Role of Nanostructured Metal Oxides in Production, Conversion, and Storage in Harvesting Renewable Energy -- 1.5 Synthesis of Nanostructured Metal Oxides for Photovoltaic Cell Application -- 1.5.1 Chemical Vapor Deposition Method -- 1.5.2 Metal Organic Chemical Vapor Deposition Method -- 1.5.3 Plasma-Enhanced CVD (PECVD) Method -- 1.5.4 Spray Pyrolysis Method -- 1.5.5 Atomic Layer Deposition or Atomic Layer Epitaxy Method -- 1.5.6 Chemical Co-Precipitation Method -- 1.5.7 Sol-Gel Method -- 1.5.8 Solvothermal/Hydrothermal Method -- 1.5.9 Microemulsions Method -- 1.5.10 Microwave-Assisted Method -- 1.5.11 Ultrasonic/Sonochemical Method -- 1.5.12 Green Chemistry Method -- 1.5.13 Spin Coating Method -- 1.5.14 Dip Coating Method -- 1.5.15 Physical Vapor Deposition (PVD) Methods -- 1.5.16 Pulsed Laser Deposition Method -- 1.5.17 Sputtering Method -- 1.5.17.1 Radio Frequency (RF) Sputtering Method -- 1.5.17.2 DC Sputtering Method -- 1.5.18 Chemical Bath Deposition Method -- 1.5.19 Electron Beam Evaporation -- 1.5.20 Thermal Evaporation Technique -- 1.5.21 Electrodeposition Method -- 1.5.22 Anodic Oxidation Method -- 1.5.23 Screen Printing Method -- 1.6 Characterization of Metal Oxide Nanoparticles/Thin Films -- 1.7 Conclusion and Future Aspects -- References.Chapter 2 Experimental Realization of Zinc Oxide: A Comparison Between Nano and Micro-Film -- 2.1 Introduction -- 2.2 Approaches to Nanotechnology -- 2.3 Wide Band Semiconductors -- 2.4 Zinc Oxide (ZnO) -- 2.4.1 Crystal Structure of ZnO -- 2.5 Properties of Zinc Oxide -- 2.5.1 Mechanical Properties -- 2.5.2 Electronic Properties -- 2.5.3 Luminescence Characteristics -- 2.5.4 Optical Band Gap -- 2.6 Thin Film Deposition Techniques -- 2.6.1 Thin and Thick Film -- 2.6.2 Solution-Cum Syringe Spray Method -- 2.7 Procedure of Experimental Work -- 2.8 Calculation of Thickness of Thin ZnO Films -- 2.9 Structural Analysis -- 2.9.1 XRD (X-Ray Diffraction) -- 2.9.2 SEM (Scanning Electron Microscope) -- 2.10 Optical Characterization -- 2.10.1 UV Spectroscopy -- 2.10.2 Photoluminescence (PL) Spectroscopy -- 2.11 Electrical Characterization -- 2.11.1 Resistivity by Two-Probe Method -- 2.12 Applications of Zinc Oxide -- 2.13 Conclusions and Future Work -- References -- Chapter 3 Luminescent Nanocrystalline Metal Oxides: Synthesis, Applications, and Future Challenges -- 3.1 Introduction -- 3.2 Different Types of Luminescence -- 3.2.1 Photoluminescence -- 3.2.2 Thermoluminescence -- 3.2.3 Chemiluminescence -- 3.2.4 Sonoluminescence -- 3.2.5 Bioluminescence -- 3.2.6 Triboluminescence -- 3.2.7 Cathodoluminescence -- 3.2.8 Electroluminescence -- 3.2.9 Radioluminescence -- 3.3 Luminescence Mechanism in Nanomaterials -- 3.4 Luminescent Nanomaterials Characteristic Properties -- 3.5 Synthesis and Shape Control Methods for Luminescent Metal Oxide Nanomaterials -- 3.5.1 Chemical Vapor Synthesis Method -- 3.5.2 Thermal Decomposition Method -- 3.5.3 Pulsed Electron Beam Evaporation Method -- 3.5.4 Microwave-Assisted Combustion Method -- 3.5.5 Hydrothermal/Solvothermal Method -- 3.5.6 Sol-Gel Method -- 3.5.7 Chemical Co-Precipitation Method -- 3.5.8 Sonochemical Method.3.5.9 Continuous Flow Method -- 3.5.10 Aerosol Pyrolysis Method -- 3.5.11 Polyol-Mediated Methods -- 3.5.12 Two-Phase Method -- 3.5.13 Microemulsion Method -- 3.5.14 Green Synthesis Method -- 3.6 Characterization of Nanocrystalline Luminescent Metal Oxides -- 3.7 Applications of Nanocrystalline Luminescent Metal Oxides -- 3.8 Conclusion and Future Aspects of Nanocrystalline Luminescent Metal Oxides -- References -- Chapter 4 Status, Challenges and Bright Future of Nanocomposite Metal Oxide for Optoelectronic Device Applications -- Abbreviations -- 4.1 Introduction -- 4.2 Synthesis of Nanocomposite Metal Oxide by Physical and Chemical Routes -- 4.2.1 Synthesis of Metal Oxides Nanoparticles by Chemical Technique -- 4.2.2 Synthesis of Metal Oxides Nanoparticles by Physical Technique -- 4.2.3 Synthesis of Metal Oxides by Mechanical Technique -- 4.3 Characterization Techniques Used for Metal Oxide Optoelectronics -- 4.3.1 X-Ray Diffraction (XRD) -- 4.3.2 Scanning Electron Microscopy (SEM) -- 4.3.3 Transmission Electron Microscopy (TEM) -- 4.3.4 Rutherford Backscattering Spectrometry (RBS) -- 4.3.5 Fourier-Transform Infra-Red (FTIR) -- 4.3.6 Raman Spectroscopy -- 4.3.7 Luminescence Technique -- 4.4 Optoelectronic Devices Based on MOs Nanocomposites -- 4.4.1 Light-Emitting Device -- 4.4.2 Photodetector -- 4.4.3 Solar Cell -- 4.4.4 Charge-Transporting Layers Using Metal Oxide NPs -- 4.4.5 MO NPs as a Medium for Light Conversion -- 4.4.6 Transparent Conducting Oxides (TCO) -- 4.5 Advantages of Pure/Doped Metal Oxides Used in Optoelectronic Device Fabrication -- 4.6 Parameters Required for Optoelectronic Devices Applications -- 4.7 Conclusion and Future Perspective of Metal Oxides-Based Optoelectronic Devices -- Acknowledgement -- References -- Part II: Thin Film Technology -- Chapter 5 Semiconductor Metal Oxide Thin Films: An Overview -- 5.1 Introduction.5.1.1 An Introduction to Semiconducting Metal Oxide -- 5.1.2 Properties of Semiconducting Metal Oxide -- 5.1.3 Semiconducting Metal Oxide Thin Films -- 5.1.4 Thin Films Deposition Method -- 5.1.4.1 Physical Vapor Deposition (PVD) Method -- 5.1.4.2 Evaporation Methodology -- 5.1.4.3 Thermal Evaporation -- 5.1.4.4 Molecular Beam Epitaxy -- 5.1.4.5 Electron Beam Evaporation -- 5.1.4.6 Advantages and Disadvantages of PVD Method -- 5.1.4.7 Sputtering Technique -- 5.1.4.8 Advantages and Disadvantages of Sputtering Technique -- 5.1.4.9 Chemical Vapor Deposition (CVD) -- 5.1.4.10 Photo-Enhanced Chemical Vapor Deposition (PHCVD) -- 5.1.4.11 Laser-Induced Chemical Vapor Deposition (LICVD) -- 5.1.4.12 Atmospheric Pressure Chemical Vapor Deposition (APCVD) -- 5.1.4.13 Plasma Enhanced Chemical Vapor Deposition (PECVD) -- 5.1.4.14 Atomic Layer Deposition (ALD) -- 5.1.4.15 Electrolytic Anodization -- 5.1.4.16 Electroplating -- 5.1.4.17 Chemical Reduction Plating -- 5.1.4.18 Electroless Plating -- 5.1.4.19 Electrophoretic Deposition -- 5.1.4.20 Immersion Plating -- 5.1.4.21 Advantages and Disadvantages of CVD Process -- 5.1.4.22 Sol-Gel Method -- 5.1.5 Application of Semiconducting Metal Oxide Thin Films -- 5.1.5.1 Photovoltaic Cells -- 5.1.5.2 Thin-Film Transistors -- 5.1.5.3 Computer Hardware -- 5.1.5.4 LED and Optical Displays -- 5.1.6 Limitations of Semiconductor Thin Films -- 5.2 Conclusion and Outlook -- Acknowledgement -- References -- Chapter 6 Thin Film Fabrication Techniques -- 6.1 Introduction -- 6.2 Thin Film - Types and Their Application -- 6.3 Classification of Thin-Film Fabrication Techniques -- 6.4 Methodology -- 6.4.1 Thermal Evaporation -- 6.4.2 Molecular Beam Epitaxy -- 6.4.3 Electron Beam Evaporation -- 6.4.4 Sputtering Technique -- 6.4.5 Chemical Vapor Deposition (CVD) -- 6.4.6 Atomic Layer Deposition (ALD).6.4.7 Liquid Phase Chemical Formation Technique -- 6.4.8 Electrolytic Anodization -- 6.4.9 Electroplating -- 6.5 Advantages of CVD Process -- 6.6 Comparison Between PVD and CVD -- 6.7 Conclusion -- References -- Chapter 7 Printable Photovoltaic Solar Cells -- 7.1 Introduction -- 7.2 Working Principle of Printable Solar Cells -- 7.3 Wide Band Gap Semiconductors -- 7.3.1 Cadmium Telluride Solar Cells (CIGS) -- 7.3.2 Perovskite Solar Cells -- 7.3.3 Solar Cells Based on Additive Free Materials -- 7.3.4 Charge-Carrier Selective Layers That Can Be Printed -- 7.4 Metal Oxide-Based Printable Solar Cell -- 7.5 What is Thick Film, Its Technology with Advantages -- 7.5.1 Thick Film Materials Substrates -- 7.5.2 Thick Film Inks -- 7.6 To Select Suitable Technology for Film Deposition by Considering the Economy, Flexibility, Reliability, and Performance Aspects -- 7.6.1 Experimental Procedure for Preparation of Thick Films by Screen Printing Process -- 7.6.2 Quality of Printing -- 7.6.3 The Following Factors Contribute to Incomplete Filling -- 7.7 Procedures for Firing -- 7.7.1 Thick Film Technology has Four Distinct Advantages -- 7.8 Deposition of Thin Film Layers via Solution-Based Process -- 7.8.1 Approaches for Coating -- 7.8.2 Casting -- 7.8.3 Spin Coating -- 7.8.4 Blade Coating -- Conclusion -- References -- Chapter 8 Response of Metal Oxide Thin Films Under Laser Irradiation -- 8.1 Introduction -- 8.2 Interaction of Laser with Material -- 8.3 Radiation Causes Modification -- 8.4 Application Laser Irradiated Films -- 8.5 Wavelength Range of Radiation -- 8.6 Laser Irradiation Mechanism -- 8.7 Experimental Procedure -- 8.7.1 Thin Film Technologies -- 8.7.2 What is Thick Film, Its Technology with Advantages -- 8.7.3 Experimental Detail of Screen Printing and Preparation of Zn0.80Cd0.20O Paste for Coated Film -- 8.7.4 Variation of Optical Properties.8.7.5 Electrical Conduction Mechanism.Nanostructured materialsOxide coatingThin filmsNanostructured materials.Oxide coating.Thin films.620.115Zargar Rayees AhmadMiAaPQMiAaPQMiAaPQBOOK9910830050803321Metal oxide nanocomposite thin films for optoelectronic device applications4087575UNINA