05444nam 2200661 450 991046413380332120200520144314.01-61705-222-1(CKB)2670000000592144(EBL)1938227(SSID)ssj0001420989(PQKBManifestationID)12540328(PQKBTitleCode)TC0001420989(PQKBWorkID)11404056(PQKB)10257878(MiAaPQ)EBC1938227(Au-PeEL)EBL1938227(CaPaEBR)ebr11016332(CaONFJC)MIL718637(OCoLC)902725071(EXLCZ)99267000000059214420150218h20152015 uy 0engur|n|---|||||txtccrCytopathology case reviews /Christopher J. VandenBussche and Syed Z. Ali ; acquisitions editor, Rich WintersNew York, New York :Demos Medical,2015.©20151 online resource (271 p.)Description based upon print version of record.1-322-87355-0 1-62070-059-X Includes bibliographical references and indexes at the end of each chapters.Cover; Title; Copyright; Contents; Foreword; Preface; Share Cytopathology Case Review; Case 1: Fluid Pericardium; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; b. Hodgkin Lymphoma; References; Case 2: FNA Thyroid; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; b. Medullary Thyroid Carcinoma; References; Case 3: Pap test Cervix; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; e. ASC-US and AGC; References; Case 4: Fluid Abdomen; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussionb. Pleomorphic RhabdomyosarcomaReference; Case 5: FNA Lymph node; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; e. Metastatic Renal Cell Carcinoma; Reference; Case 6: FNA Breast; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; d. Ductal Carcinoma With Mucinous Features; References; Case 7: Urine Bladder; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; a. Carcinoma With Extensive Squamous Differentiation; References; Case 8: FNA Lung; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussionb. Metastatic Malignant MelanomaReferences; Case 9: FNA Liver; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; e. Poorly Differentiated Hepatocellular Carcinoma (HCC); Reference; Case 10: FNA Pleura; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; c. Malignant Mesothelioma; Reference; Case 11: FNA Bone; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; b. Large Cell Lymphoma; References; Case 12: Pap test Cervix; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussiona. Squamous Cell Carcinoma of the CervixReference; Case 13: FNA Stomach; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; b. Gastrointestinal Stromal Tumor (GIST); Reference; Case 14: FNA Pancreas; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; a. Well-Differentiated Pancreatic Neuroendocrine Tumor (PanNET); Reference; Case 15: FNA Soft tissue; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; b. Ulcerating Tuberculous Infection (Scrofula); References; Case 16: FNA Salivary; Clinical History; Choose the Best DiagnosisAnswer and Brief Discussionc. Pleomorphic Adenoma; References; Case 17: FNA Liver; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; d. Consistent With Focal Nodular Hyperplasia; References; Case 18: FNA Thyroid; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; c. Consistent With Graves' Disease; References; Case 19: FNA Soft tissue; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussion; d. Schwannoma; References; Case 20: FNA Salivary; Clinical History; Choose the Best Diagnosis; Answer and Brief Discussiond. Mucoepidermoid Carcinoma (MEC), High GradePathology residents, fellows, and practitioners will welcome this cytopathology review of carefully selected case scenarios drawn from the Johns Hopkins case archive. Each illustrated case scenario contains multiple-choice questions along with detailed explanations and references. Authored by distinguished faculty at Johns Hopkins University, the helpful review covers all major topics within cytopathology. Each clinical case scenario includes representative images and clinical history, diagnostic question, and detailed discussion supported by thoughtfully selected key references. Cases are presCytodiagnosisCase studiesPathology, CellularCase studiesElectronic books.CytodiagnosisPathology, Cellular616.07/582VandenBussche Christopher J.1031039Ali Syed Z.Winters RichMiAaPQMiAaPQMiAaPQBOOK9910464133803321Cytopathology case reviews2448230UNINA11859nam 2200685 450 991082999080332120230125194911.01-118-61462-31-299-47574-41-118-61463-110.1002/9781118614563(CKB)2550000001020360(EBL)1169506(SSID)ssj0000860566(PQKBManifestationID)11503668(PQKBTitleCode)TC0000860566(PQKBWorkID)10897915(PQKB)10483103(MiAaPQ)EBC1169506(CaBNVSL)mat06515232(IDAMS)0b00006481d64681(IEEE)6515232(OCoLC)842929854(PPN)264535677(EXLCZ)99255000000102036020151222d2013 uy engur|n|---|||||txtccrNumerical analysis with applications in mechanics and engineering /Petre Teodorescu, Nicolae-Doru Stanescu, Nicolae PandreaHoboken, New Jersey :John Wiley & Sons Inc.,c2013.[Piscataqay, New Jersey] :IEEE Xplore,[2013]1 online resource (647 p.)Description based upon print version of record.1-118-61456-9 1-118-07750-4 Includes bibliographical references.Preface xi -- 1 Errors in Numerical Analysis 1 -- 1.1 Enter Data Errors, 1 -- 1.2 Approximation Errors, 2 -- 1.3 Round-Off Errors, 3 -- 1.4 Propagation of Errors, 3 -- 1.4.1 Addition, 3 -- 1.4.2 Multiplication, 5 -- 1.4.3 Inversion of a Number, 7 -- 1.4.4 Division of Two Numbers, 7 -- 1.4.5 Raising to a Negative Entire Power, 7 -- 1.4.6 Taking the Root of pth Order, 7 -- 1.4.7 Subtraction, 8 -- 1.4.8 Computation of Functions, 8 -- 1.5 Applications, 8 -- Further Reading, 14 -- 2 Solution of Equations 17 -- 2.1 The Bipartition (Bisection) Method, 17 -- 2.2 The Chord (Secant) Method, 20 -- 2.3 The Tangent Method (Newton), 26 -- 2.4 The Contraction Method, 37 -- 2.5 The Newton-Kantorovich Method, 42 -- 2.6 Numerical Examples, 46 -- 2.7 Applications, 49 -- Further Reading, 52 -- 3 Solution of Algebraic Equations 55 -- 3.1 Determination of Limits of the Roots of Polynomials, 55 -- 3.2 Separation of Roots, 60 -- 3.3 Lagrange's Method, 69 -- 3.4 The Lobachevski-Graeffe Method, 72 -- 3.4.1 The Case of Distinct Real Roots, 72 -- 3.4.2 The Case of a Pair of Complex Conjugate Roots, 74 -- 3.4.3 The Case of Two Pairs of Complex Conjugate Roots, 75 -- 3.5 The Bernoulli Method, 76 -- 3.6 The Bierge-Vi`ete Method, 79 -- 3.7 Lin Methods, 79 -- 3.8 Numerical Examples, 82 -- 3.9 Applications, 94 -- Further Reading, 109 -- 4 Linear Algebra 111 -- 4.1 Calculation of Determinants, 111 -- 4.1.1 Use of Definition, 111 -- 4.1.2 Use of Equivalent Matrices, 112 -- 4.2 Calculation of the Rank, 113 -- 4.3 Norm of a Matrix, 114 -- 4.4 Inversion of Matrices, 123 -- 4.4.1 Direct Inversion, 123 -- 4.4.2 The Gauss-Jordan Method, 124 -- 4.4.3 The Determination of the Inverse Matrix by its Partition, 125 -- 4.4.4 Schur's Method of Inversion of Matrices, 127 -- 4.4.5 The Iterative Method (Schulz), 128 -- 4.4.6 Inversion by Means of the Characteristic Polynomial, 131 -- 4.4.7 The Frame-Fadeev Method, 131 -- 4.5 Solution of Linear Algebraic Systems of Equations, 132 -- 4.5.1 Cramer's Rule, 132 -- 4.5.2 Gauss's Method, 133.4.5.3 The Gauss-Jordan Method, 134 -- 4.5.4 The LU Factorization, 135 -- 4.5.5 The Schur Method of Solving Systems of Linear Equations, 137 -- 4.5.6 The Iteration Method (Jacobi), 142 -- 4.5.7 The Gauss-Seidel Method, 147 -- 4.5.8 The Relaxation Method, 149 -- 4.5.9 The Monte Carlo Method, 150 -- 4.5.10 Infinite Systems of Linear Equations, 152 -- 4.6 Determination of Eigenvalues and Eigenvectors, 153 -- 4.6.1 Introduction, 153 -- 4.6.2 Krylov's Method, 155 -- 4.6.3 Danilevski's Method, 157 -- 4.6.4 The Direct Power Method, 160 -- 4.6.5 The Inverse Power Method, 165 -- 4.6.6 The Displacement Method, 166 -- 4.6.7 Leverrier's Method, 166 -- 4.6.8 The L-R (Left-Right) Method, 166 -- 4.6.9 The Rotation Method, 168 -- 4.7 QR Decomposition, 169 -- 4.8 The Singular Value Decomposition (SVD), 172 -- 4.9 Use of the Least Squares Method in Solving the Linear Overdetermined Systems, 174 -- 4.10 The Pseudo-Inverse of a Matrix, 177 -- 4.11 Solving of the Underdetermined Linear Systems, 178 -- 4.12 Numerical Examples, 178 -- 4.13 Applications, 211 -- Further Reading, 269 -- 5 Solution of Systems of Nonlinear Equations 273 -- 5.1 The Iteration Method (Jacobi), 273 -- 5.2 Newton's Method, 275 -- 5.3 The Modified Newton's Method, 276 -- 5.4 The Newton-Raphson Method, 277 -- 5.5 The Gradient Method, 277 -- 5.6 The Method of Entire Series, 280 -- 5.7 Numerical Example, 281 -- 5.8 Applications, 287 -- Further Reading, 304 -- 6 Interpolation and Approximation of Functions 307 -- 6.1 Lagrange's Interpolation Polynomial, 307 -- 6.2 Taylor Polynomials, 311 -- 6.3 Finite Differences: Generalized Power, 312 -- 6.4 Newton's Interpolation Polynomials, 317 -- 6.5 Central Differences: Gauss's Formulae, Stirling's Formula, Bessel's Formula, Everett's Formulae, 322 -- 6.6 Divided Differences, 327 -- 6.7 Newton-Type Formula with Divided Differences, 331 -- 6.8 Inverse Interpolation, 332 -- 6.9 Determination of the Roots of an Equation by Inverse Interpolation, 333 -- 6.10 Interpolation by Spline Functions, 335.6.11 Hermite's Interpolation, 339 -- 6.12 Chebyshev's Polynomials, 340 -- 6.13 Mini-Max Approximation of Functions, 344 -- 6.14 Almost Mini-Max Approximation of Functions, 345 -- 6.15 Approximation of Functions by Trigonometric Functions (Fourier), 346 -- 6.16 Approximation of Functions by the Least Squares, 352 -- 6.17 Other Methods of Interpolation, 354 -- 6.17.1 Interpolation with Rational Functions, 354 -- 6.17.2 The Method of Least Squares with Rational Functions, 355 -- 6.17.3 Interpolation with Exponentials, 355 -- 6.18 Numerical Examples, 356 -- 6.19 Applications, 363 -- Further Reading, 374 -- 7 Numerical Differentiation and Integration 377 -- 7.1 Introduction, 377 -- 7.2 Numerical Differentiation by Means of an Expansion into a Taylor Series, 377 -- 7.3 Numerical Differentiation by Means of Interpolation Polynomials, 380 -- 7.4 Introduction to Numerical Integration, 382 -- 7.5 The Newton-Cˆotes Quadrature Formulae, 384 -- 7.6 The Trapezoid Formula, 386 -- 7.7 Simpson's Formula, 389 -- 7.8 Euler's and Gregory's Formulae, 393 -- 7.9 Romberg's Formula, 396 -- 7.10 Chebyshev's Quadrature Formulae, 398 -- 7.11 Legendre's Polynomials, 400 -- 7.12 Gauss's Quadrature Formulae, 405 -- 7.13 Orthogonal Polynomials, 406 -- 7.13.1 Legendre Polynomials, 407 -- 7.13.2 Chebyshev Polynomials, 407 -- 7.13.3 Jacobi Polynomials, 408 -- 7.13.4 Hermite Polynomials, 408 -- 7.13.5 Laguerre Polynomials, 409 -- 7.13.6 General Properties of the Orthogonal Polynomials, 410 -- 7.14 Quadrature Formulae of Gauss Type Obtained by Orthogonal Polynomials, 412 -- 7.14.1 Gauss-Jacobi Quadrature Formulae, 413 -- 7.14.2 Gauss-Hermite Quadrature Formulae, 414 -- 7.14.3 Gauss-Laguerre Quadrature Formulae, 415 -- 7.15 Other Quadrature Formulae, 417 -- 7.15.1 Gauss Formulae with Imposed Points, 417 -- 7.15.2 Gauss Formulae in which the Derivatives of the Function Also Appear, 418 -- 7.16 Calculation of Improper Integrals, 420 -- 7.17 Kantorovich's Method, 422 -- 7.18 The Monte Carlo Method for Calculation of Definite Integrals, 423.7.18.1 The One-Dimensional Case, 423 -- 7.18.2 The Multidimensional Case, 425 -- 7.19 Numerical Examples, 427 -- 7.20 Applications, 435 -- Further Reading, 447 -- 8 Integration of Ordinary Differential Equations and of Systems of Ordinary Differential Equations 451 -- 8.1 State of the Problem, 451 -- 8.2 Euler's Method, 454 -- 8.3 Taylor Method, 457 -- 8.4 The Runge-Kutta Methods, 458 -- 8.5 Multistep Methods, 462 -- 8.6 Adams's Method, 463 -- 8.7 The Adams-Bashforth Methods, 465 -- 8.8 The Adams-Moulton Methods, 467 -- 8.9 Predictor-Corrector Methods, 469 -- 8.9.1 Euler's Predictor-Corrector Method, 469 -- 8.9.2 Adams's Predictor-Corrector Methods, 469 -- 8.9.3 Milne's Fourth-Order Predictor-Corrector Method, 470 -- 8.9.4 Hamming's Predictor-Corrector Method, 470 -- 8.10 The Linear Equivalence Method (LEM), 471 -- 8.11 Considerations about the Errors, 473 -- 8.12 Numerical Example, 474 -- 8.13 Applications, 480 -- Further Reading, 525 -- 9 Integration of Partial Differential Equations and of Systems of Partial Differential Equations 529 -- 9.1 Introduction, 529 -- 9.2 Partial Differential Equations of First Order, 529 -- 9.2.1 Numerical Integration by Means of Explicit Schemata, 531 -- 9.2.2 Numerical Integration by Means of Implicit Schemata, 533 -- 9.3 Partial Differential Equations of Second Order, 534 -- 9.4 Partial Differential Equations of Second Order of Elliptic Type, 534 -- 9.5 Partial Differential Equations of Second Order of Parabolic Type, 538 -- 9.6 Partial Differential Equations of Second Order of Hyperbolic Type, 543 -- 9.7 Point Matching Method, 546 -- 9.8 Variational Methods, 547 -- 9.8.1 Ritz's Method, 549 -- 9.8.2 Galerkin's Method, 551 -- 9.8.3 Method of the Least Squares, 553 -- 9.9 Numerical Examples, 554 -- 9.10 Applications, 562 -- Further Reading, 575 -- 10 Optimizations 577 -- 10.1 Introduction, 577 -- 10.2 Minimization Along a Direction, 578 -- 10.2.1 Localization of the Minimum, 579 -- 10.2.2 Determination of the Minimum, 580 -- 10.3 Conjugate Directions, 583.10.4 Powell's Algorithm, 585 -- 10.5 Methods of Gradient Type, 585 -- 10.5.1 The Gradient Method, 585 -- 10.5.2 The Conjugate Gradient Method, 587 -- 10.5.3 Solution of Systems of Linear Equations by Means of Methods of Gradient Type, 589 -- 10.6 Methods of Newton Type, 590 -- 10.6.1 Newton's Method, 590 -- 10.6.2 Quasi-Newton Method, 592 -- 10.7 Linear Programming: The Simplex Algorithm, 593 -- 10.7.1 Introduction, 593 -- 10.7.2 Formulation of the Problem of Linear Programming, 595 -- 10.7.3 Geometrical Interpretation, 597 -- 10.7.4 The Primal Simplex Algorithm, 597 -- 10.7.5 The Dual Simplex Algorithm, 599 -- 10.8 Convex Programming, 600 -- 10.9 Numerical Methods for Problems of Convex Programming, 602 -- 10.9.1 Method of Conditional Gradient, 602 -- 10.9.2 Method of Gradient's Projection, 602 -- 10.9.3 Method of Possible Directions, 603 -- 10.9.4 Method of Penalizing Functions, 603 -- 10.10 Quadratic Programming, 603 -- 10.11 Dynamic Programming, 605 -- 10.12 Pontryagin's Principle of Maximum, 607 -- 10.13 Problems of Extremum, 609 -- 10.14 Numerical Examples, 611 -- 10.15 Applications, 623 -- Further Reading, 626 -- Index 629. A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret resuNumerical analysisEngineering mathematicsNumerical analysis.Engineering mathematics.620.001518Teodorescu P. P.932126Stanescu Nicolae-Doru1697831Pandrea Nicolae1663289CaBNVSLCaBNVSLCaBNVSLBOOK9910829990803321Numerical analysis with applications in mechanics and engineering4078844UNINA