05275nam 2200613 a 450 991082996870332120230721003730.01-281-83143-397866118314310-470-03407-60-470-03408-4(CKB)1000000000556337(EBL)366759(OCoLC)437234382(SSID)ssj0000241529(PQKBManifestationID)11219025(PQKBTitleCode)TC0000241529(PQKBWorkID)10297304(PQKB)10306991(MiAaPQ)EBC366759(EXLCZ)99100000000055633720070910d2007 uy 0engur|n|---|||||txtccrScaling issues and design of MEMS[electronic resource] /Salvatore Baglio, Salvatore Castorina, Nicolò€ SavalliChichester, West Sussex, England ;Hoboken, NJ John Wiley & Sonsc20071 online resource (245 p.)Description based upon print version of record.0-470-01699-X Includes bibliographical references and index.Scaling Issues and Design of MEMS; Contents; Preface; Introduction; 1 Scaling of MEMS; 1.1 Introduction to Scaling Issues; 1.2 Examples of Dimensional Scaling Potentials; 1.2.1 Scaling effects on a cantilever beam; 1.2.2 Scaling of electrostatic actuators; 1.2.3 Scaling of thermal actuators; 1.3 Motivation, Fabrication and Scaling of MEMS; 1.4 Scaling as a Methodological Approach; References; 2 Scaling of Microactuators - an Overview; 2.1 Electrostatic Actuators; 2.1.1 Transverse combs modelling; 2.1.2 Lateral combs modelling; 2.2 Magnetic Transducers; 2.2.1 Magnetic actuators2.2.2 Ferromagnetic transducers2.3 Thermal Actuators; 2.3.1 Thermomechanical actuators; Acknowledgements; References; 3 Scaling of Thermal Sensors; 3.1 Thermoelectric Sensors; 3.2 Application: Dew-Point Relative Humidity Sensors; 3.2.1 Device structures and operating principles; 3.2.2 Device modelling and simulations; 3.2.3 Device design; 3.3 Conclusions; Acknowledgements; References; 4 Inductive Sensors for Magnetic Fields; 4.1 Inductive Microsensors for Magnetic Particles; 4.1.1 Integrated inductive sensors; 4.1.2 Planar differential transformer; 4.1.3 Signal-conditioning circuits4.1.4 Simulation of the planar differential transformer4.1.5 Experimental results; 4.2 Magnetic Immunoassay Systems; Acknowledgements; References; 5 Scaling of Mechanical Sensors; 5.1 Introduction; 5.2 Device Modelling and Fabrication Processes; 5.2.1 Fabrication processes; 5.2.2 Devices modelling; 5.2.3 Accelerometers; 5.2.4 Resonant mass sensors; 5.3 Experimental Device Prototypes; 5.3.1 CMOS devices; 5.3.2 SOI devices; 5.3.3 Finite element modelling; 5.4 Scaling Issues on Microaccelerometers and Mass Sensors; 5.5 Some Experimental Results; 5.6 Vibrating Microgyroscopes5.6.1 Coupled vibratory gyroscopesAcknowledgements; References; 6 Scaling of Energy Sources; 6.1 Introduction; 6.2 Energy Supply Strategies for Autonomous Microsystems; 6.2.1 Use of microlenses in photothermomechanical actuation; 6.2.2 Technologies, materials and design of photothermomechanical actuators; 6.3 Photothermomechanical and Photothermoelectric Strategies for Highly Efficient Power Supply of Autonomous Microsystems; 6.3.1 Photothermoelectric power generation; 6.4 Efficiency of the Combined Energy Supply Strategy; References7 Technologies and Architectures for Autonomous MEMS Microrobots7.1 Design Issues in Microrobots; 7.2 A Microrobot Architecture Based on Photothermal Strategy; 7.3 A Microrobot as a Paradigm for the Analysis of Scaling in Microsystems; References; 8 Moving towards the Nanoscale; 8.1 Semiconductor-Based Nano-Electromechanical Systems; 8.2 Nanofabrication Facilities; 8.3 Overview of Nanosensors; 8.3.1 Use of AFM for materials and nanodevices characterization; 8.3.2 Scanning thermal microscopy (SThM); 8.3.3 Scanning Hall probe microscopy8.3.4 Mechanical resonant immunospecific biological detectorThis accessible volume delivers a complete design methodology for microelectromechanical systems (MEMS). Focusing on the scaling of an autonomous micro-system, it explains the real-world problems and theoretical concepts of several different aspects inherent to the miniaturization of sensors and actuators. It reports on the analysis of dimensional scaling, the modelling, design and experimental characterization of a wide range of specific devices and applications, including: temperature microsensors based on an integrated complementary metal-oxide-semiconductor (CMOS) tMicroelectromechanical systemsDesign and constructionMicroelectromechanical systemsDesign and construction.620/.5621.381Baglio S(Salvatore)1615371Castorina Salvatore501480Savalli Nicolò€1615372MiAaPQMiAaPQMiAaPQBOOK9910829968703321Scaling issues and design of MEMS3945533UNINA