02653nam0 22004211i 450 SUN004819820160428114130.2330.0020060720d1969 |0itac50 baitaIT|||| |||||*Grotta Regina, 1. Rapporto preliminare della missione congiunta con la Soprintendenza alle antichità della Sicilia occidentaledi Anna Maria BisiMaria Giulia Guzzo AmadasiVincenzo TusaRoma : Consiglio nazionale delle ricerche, 196967 p.tav. ; 23 cmA cura del Centro di studio per la civiltà fenicia e punica presso l'Istituto di studi del Vicino Oriente dell'Università di Roma, che figura in testa al front.001SUN00481492001 Studi semitici33210 RomaConsiglio nazionale delle ricerche1958-.001SUN00481502001 Pubblicazioni del Centro di studio per la civiltà fenicia e punica4210 RomaConsiglio nazionale delle ricerche1969-.Scavi archeologiciGrotta Regina1969LBSUNC032269PreistoriaGrotta ReginaLBSUNC032270RomaSUNL000360913.37GEOGRAFIA DEL MONDO ANTICO. ROMA18Bisi, Anna MariaSUNV022597Amadasi Guzzo, Maria G.SUNV026602Tusa, Vincenzo1920-2009SUNV069077Centro di studio per la civiltà fenicia e punicaSUNV038262Consiglio nazionale delle ricercheSUNV000327650Guzzo Amadasi, Maria GiuliaAmadasi Guzzo, Maria G.SUNV038268Amadasi, Maria G.Amadasi Guzzo, Maria G.SUNV038670Centro di studio per la civilta fenicia e punicaCentro di studio per la civiltà fenicia e punicaSUNV041368ITSOL20181109RICASUN0048198UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI07 CONS Ac 885 07 DP 662 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI07 CONS Ac 885 I 07 DP 48198 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALIIT-CE0103DP662CONS Ac 885caUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALIIT-CE0103DP48198CONS Ac 885 IcaGrotta Regina, 1. Rapporto preliminare della missione congiunta con la Soprintendenza alle antichità della Sicilia occidentale1426883UNICAMPANIA03972nam 2200625Ia 450 991082992170332120170810191550.01-280-36700-897866103670090-470-31182-70-471-46166-00-471-24970-X(CKB)111087027121356(EBL)157071(OCoLC)475872690(SSID)ssj0000130321(PQKBManifestationID)11146398(PQKBTitleCode)TC0000130321(PQKBWorkID)10082121(PQKB)11452153(MiAaPQ)EBC157071(PPN)169570053(EXLCZ)9911108702712135620010706d2002 uy 0engur|n|---|||||txtccrConvexity and optimization in R [superscript n][electronic resource] /Leonard D. BerkovitzNew York J. Wileyc20021 online resource (283 p.)Pure and applied mathematicssDescription based upon print version of record.0-471-35281-0 Includes bibliographical references (p. 261-262) and index.CONVEXITY AND OPTIMIZATION IN R(n); CONTENTS; Preface; I Topics in Real Analysis; 1. Introduction; 2. Vectors in R(n); 3. Algebra of Sets; 4. Metric Topology of R(n); 5. Limits and Continuity; 6. Basic Property of Real Numbers; 7. Compactness; 8. Equivalent Norms and Cartesian Products; 9. Fundamental Existence Theorem; 10. Linear Transformations; 11. Differentiation in R(n); II Convex Sets in R(n); 1. Lines and Hyperplanes in R(n); 2. Properties of Convex Sets; 3. Separation Theorems; 4. Supporting Hyperplanes: Extreme Points; 5. Systems of Linear Inequalities: Theorems of the Alternative6. Affine Geometry7. More on Separation and Support; III Convex Functions; 1. Definition and Elementary Properties; 2. Subgradients; 3. Differentiable Convex Functions; 4. Alternative Theorems for Convex Functions; 5. Application to Game Theory; IV Optimization Problems; 1. Introduction; 2. Differentiable Unconstrained Problems; 3. Optimization of Convex Functions; 4. Linear Programming Problems; 5. First-Order Conditions for Differentiable Nonlinear Programming Problems; 6. Second-Order Conditions; V Convex Programming and Duality; 1. Problem Statement2. Necessary Conditions and Sufficient Conditions3. Perturbation Theory; 4. Lagrangian Duality; 5. Geometric Interpretation; 6. Quadratic Programming; 7. Duality in Linear Programming; VI Simplex Method; 1. Introduction; 2. Extreme Points of Feasible Set; 3. Preliminaries to Simplex Method; 4. Phase II of Simplex Method; 5. Termination and Cycling; 6. Phase I of Simplex Method; 7. Revised Simplex Method; Bibliography; IndexA comprehensive introduction to convexity and optimization in RnThis book presents the mathematics of finite dimensional constrained optimization problems. It provides a basis for the further mathematical study of convexity, of more general optimization problems, and of numerical algorithms for the solution of finite dimensional optimization problems. For readers who do not have the requisite background in real analysis, the author provides a chapter covering this material. The text features abundant exercises and problems designed to lead the reader to a fundamental understanding of tPure and applied mathematics (John Wiley & Sons : Unnumbered)Convex setsMathematical optimizationConvex sets.Mathematical optimization.516/.08519.3Berkovitz Leonard David1924-283994MiAaPQMiAaPQMiAaPQBOOK9910829921703321Convexity and optimization in R3935798UNINA