05403nam 2200697 450 991082928870332120230803202213.01-5231-1095-31-118-93123-81-118-93121-11-118-93122-X(CKB)3710000000099096(EBL)1676670(SSID)ssj0001340636(PQKBManifestationID)11739953(PQKBTitleCode)TC0001340636(PQKBWorkID)11381192(PQKB)10830923(OCoLC)878679282(Au-PeEL)EBL1676670(CaPaEBR)ebr10862673(CaONFJC)MIL620520(OCoLC)878263213(MiAaPQ)EBC1676670(EXLCZ)99371000000009909620140429h20142014 uy 0engur|n|---|||||txtccrSpecification development /Christian LalanneThird edition.London, England ;Hoboken, New Jersey :ISTE Ltd :John Wiley and Sons,2014.©20141 online resource (555 p.)Mechanical Vibration and Shock Analysis ;Volume 5Description based upon print version of record.1-84821-648-3 Includes bibliographical references and index.Cover; Title Page; Copyright; Contents; Foreword to Series; Introduction; List of Symbols; Chapter 1. Extreme Response Spectrum of a Sinusoidal Vibration; 1.1. The effects of vibration; 1.2. Extreme response spectrum of a sinusoidal vibration; 1.2.1. Definition; 1.2.2. Case of a single sinusoid; 1.2.3. General case; 1.2.4. Case of a periodic signal; 1.2.5. Case of n harmonic sinusoids; 1.2.6. Influence of the dephasing between the sinusoids; 1.3. Extreme response spectrum of a swept sine vibration; 1.3.1. Sinusoid of constant amplitude throughout the sweeping process1.3.2. Swept sine composed of several constant levelsChapter 2. Extreme Response Spectrum of a Random Vibration; 2.1. Unspecified vibratory signal; 2.2. Gaussian stationary random signal; 2.2.1. Calculation from peak distribution; 2.2.2. Use of the largest peak distribution law; 2.2.3. Response spectrum defined by k times the rms response; 2.2.4. Other ERS calculation methods; 2.3. Limit of the ERS at the high frequencies; 2.4. Response spectrum with up-crossing risk; 2.4.1. Complete expression; 2.4.2. Approximate relation; 2.4.3. Approximate relation URS - PSD2.4.4. Calculation in a hypothesis of independence of threshold overshoot2.4.5. Use of URS; 2.5. Comparison of the various formulae; 2.6. Effects of peak truncation on the acceleration time history; 2.6.1. Extreme response spectra calculated from the time history signal; 2.6.2. Extreme response spectra calculated from the power spectral densities; 2.6.3. Comparison of extreme response spectra calculated from time history signals and power spectral densities; 2.7. Sinusoidal vibration superimposed on a broadband random vibration; 2.7.1. Real environment2.7.2. Case of a single sinusoid superimposed to a wideband noise2.7.3. Case of several sinusoidal lines superimposed on a broadband random vibration; 2.8. Swept sine superimposed on a broadband random vibration; 2.8.1. Real environment; 2.8.2. Case of a single swept sine superimposed to a wideband noise; 2.8.3. Case of several swept sines superimposed on a broadband random vibration; 2.9. Swept narrowbands on a wideband random vibration; 2.9.1. Real environment; 2.9.2. Extreme response spectrum; Chapter 3. Fatigue Damage Spectrum of a Sinusoidal Vibration3.1. Fatigue damage spectrum definition3.2. Fatigue damage spectrum of a single sinusoid; 3.3. Fatigue damage spectrum of a periodic signal; 3.4. General expression for the damage; 3.5. Fatigue damage with other assumptions on the S-N curve; 3.5.1. Taking account of fatigue limit; 3.5.2. Cases where the S-N curve is approximated by a straight line in log-lin scales; 3.5.3. Comparison of the damage when the S-N curves are linear in either log-log or log-lin scales; 3.6. Fatigue damage generated by a swept sine vibration on a single-degree-of-freedom linear system; 3.6.1. General case3.6.2. Linear sweep Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to ISTEShock (Mechanics)CongressesShock wavesMathematical modelsShock (Mechanics)Shock wavesMathematical models.620.1054Lalanne Christian510072MiAaPQMiAaPQMiAaPQBOOK9910829288703321Specification development771590UNINA