04751nam 2200601 450 991082905920332120230120002212.00-12-803107-7(CKB)3710000000380013(EBL)1997686(SSID)ssj0001492135(PQKBManifestationID)11843425(PQKBTitleCode)TC0001492135(PQKBWorkID)11499707(PQKB)10644882(MiAaPQ)EBC1997686(Au-PeEL)EBL1997686(CaPaEBR)ebr11035751(CaONFJC)MIL785086(OCoLC)905649782(EXLCZ)99371000000038001320150412h20152015 uy 0engur|n|---|||||txtccrdifferential quadrature and differential quadrature based element methods theory and applications /Xinwei WangKidlington, Oxford :Butterworth-Heinemann is an imprint of Elsevier,2015.©20151 online resource (408 p.)Description based upon print version of record.0-12-803081-X Includes bibliographical references and index.Cover; Title Page; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1 - Differential quadrature method; 1.1 - Introduction; 1.2 - Integral quadrature; 1.3 - Differential quadrature method; 1.4 - Determination of weighting coefficients; 1.5 - Explicit formulation of weighting coefficients; 1.6 - Various grid points; 1.7 - Error analysis ; 1.8 - Local adaptive differential quadrature method; 1.9 - Differential quadrature time integration scheme; 1.9.1 - The method of the DQ-based time integration; 1.9.2 - Application and discussion; 1.10 - Summary; ReferencesChapter 2 - Differential quadrature element method2.1 - Introduction; 2.2 - Differential quadrature element method; 2.3 - DQEM with Hermite interpolation; 2.4 - DQEM with Lagrange interpolation; 2.5 - Assemblage procedures; 2.6 - Discussion; 2.7 - Summary; References; Chapter 3 - Methods of applying boundary conditions; 3.1 - Introduction; 3.2 - Basic equations of a Bernoulli-Euler beam; 3.3 - Methods for applying multiple boundary conditions; 3.3.1 - δ Approach; 3.3.2 - Equation replaced approach; 3.3.3 - Method of modification of weighting coefficient-1; 3.3.4 - DQEM or GDQR3.3.5 - Method of modification of weighting coefficient-23.3.6 - Method of modification of weighting coefficient-3; 3.3.7 - Method of modification of weighting coefficient-4; 3.3.8 - Virtual boundary point method or La-DQM; 3.3.9 - Method of modification of weighting coefficient-5; 3.4 - Discussion; 3.5 - Numerical examples; 3.6 - Summary; References; Chapter 4 - Quadrature element method; 4.1 - Introduction; 4.2 - Quadrature element method; 4.3 - Quadrature bar element; 4.4 - Quadrature Timoshenko beam element; 4.5 - Quadrature plane stress (strain) element4.6 - Quadrature thick plate element4.6.1 - Displacement and strain fields; 4.6.2 - Constitutive equation; 4.6.3 - Quadrature rectangular thick plate element; 4.7 - Quadrature thin beam element; 4.8 - Quadrature thin rectangular plate element; 4.8.1 - Quadrature rectangular plate element with Lagrange interpolation; 4.8.2 - Quadrature rectangular plate element with Hermite interpolation; 4.8.3 - Quadrature rectangular plate element with mixed interpolations; 4.9 - Extension to quadrilateral plate element with curved edges; 4.10 - Discussion; 4.10.1 - Assemblage procedures4.10.2 - Work equivalent load vector4.10.3 - Quadrature plate elements with nodes other than GLL points; 4.10.4 - Numerical examples; 4.11 - Summary; References; Chapter 5 - In-plane stress analysis; 5.1 - Introduction; 5.2 - Formulation-I; 5.3 - Formulation-II; 5.4 - Results and discussion; 5.5 - Equivalent boundary conditions; 5.6 - Summary; References; Chapter 6 - Static analysis of thin plate; 6.1 - Introduction; 6.2 - Rectangular thin plate under general loading; 6.2.1 - Basic equations; 6.2.2 - Differential quadrature formulation; 6.2.3 - Equivalent load; 6.3 - Applications6.3.1 - Rectangular plate under uniformly distributed loadDifferential equationsNumerical solutionsNumerical integrationDifferential equationsNumerical solutions.Numerical integration.515.35Wang Xinwei 933629MiAaPQMiAaPQMiAaPQBOOK9910829059203321Differential quadrature and differential quadrature based element methods3995273UNINA