05250nam 2200601Ia 450 991082888620332120240516101741.00-19-163034-91-283-42690-097866134269010-19-163033-0(CKB)2560000000079339(EBL)834727(OCoLC)772845035(MiAaPQ)EBC834727(Au-PeEL)EBL834727(CaPaEBR)ebr10523344(CaONFJC)MIL342690(EXLCZ)99256000000007933920110622d2011 uy 0engur|n|---|||||txtrdacontentcrdamediacrrdacarrierThe finite element method an introduction with partial differential equations /A.J. Davies2nd ed.Oxford ;New York Oxford University Press20111 online resource (308 p.)Description based upon print version of record.0-19-960913-6 Includes bibliographical references and index.Cover; Contents; 1 Historical introduction; 2 Weighted residual and variational methods; 2.1 Classification of differential operators; 2.2 Self-adjoint positive definite operators; 2.3 Weighted residual methods; 2.4 Extremum formulation: homogeneous boundary conditions; 2.5 Non-homogeneous boundary conditions; 2.6 Partial differential equations: natural boundary conditions; 2.7 The Rayleigh-Ritz method; 2.8 The 'elastic analogy' for Poisson's equation; 2.9 Variational methods for time-dependent problems; 2.10 Exercises and solutions; 3 The finite element method for elliptic problems3.1 Difficulties associated with the application of weighted residual methods3.2 Piecewise application of the Galerkin method; 3.3 Terminology; 3.4 Finite element idealization; 3.5 Illustrative problem involving one independent variable; 3.6 Finite element equations for Poisson's equation; 3.7 A rectangular element for Poisson's equation; 3.8 A triangular element for Poisson's equation; 3.9 Exercises and solutions; 4 Higher-order elements: the isoparametric concept; 4.1 A two-point boundary-value problem; 4.2 Higher-order rectangular elements; 4.3 Higher-order triangular elements4.4 Two degrees of freedom at each node4.5 Condensation of internal nodal freedoms; 4.6 Curved boundaries and higher-order elements: isoparametric elements; 4.7 Exercises and solutions; 5 Further topics in the finite element method; 5.1 The variational approach; 5.2 Collocation and least squares methods; 5.3 Use of Galerkin's method for time-dependent and non-linear problems; 5.4 Time-dependent problems using variational principles which are not extremal; 5.5 The Laplace transform; 5.6 Exercises and solutions; 6 Convergence of the finite element method; 6.1 A one-dimensional example6.2 Two-dimensional problems involving Poisson's equation6.3 Isoparametric elements: numerical integration; 6.4 Non-conforming elements: the patch test; 6.5 Comparison with the finite difference method: stability; 6.6 Exercises and solutions; 7 The boundary element method; 7.1 Integral formulation of boundary-value problems; 7.2 Boundary element idealization for Laplace's equation; 7.3 A constant boundary element for Laplace's equation; 7.4 A linear element for Laplace's equation; 7.5 Time-dependent problems; 7.6 Exercises and solutions; 8 Computational aspects; 8.1 Pre-processor8.2 Solution phase8.3 Post-processor; 8.4 Finite element method (FEM) or boundary element method (BEM)?; Appendix A: Partial differential equation models in the physical sciences; A.1 Parabolic problems; A.2 Elliptic problems; A.3 Hyperbolic problems; A.4 Initial and boundary conditions; Appendix B: Some integral theorems of the vector calculus; Appendix C: A formula for integrating products of area coordinates over a triangle; Appendix D: Numerical integration formulae; D.1 One-dimensional Gauss quadrature; D.2 Two-dimensional Gauss quadrature; D.3 Logarithmic Gauss quadratureAppendix E: Stehfest's formula and weights for numerical Laplace transform inversionThe finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is alsoexplained. This book is written at an introductory level, developing all the necessary concepts where required. CoFinite element methodNumerical analysisFinite element method.Numerical analysis.518/.25SK 910rvkDavies Alan J31003MiAaPQMiAaPQMiAaPQBOOK9910828886203321The finite element method3979577UNINA