00957nam a2200265 i 450099100109841970753620020502183539.0980416s1996 it ||| | ita 8820496844b11463521-39ule_instPRUMB54879ExLScuola per assistenti socialiita361Amadei, Tinina527008E adesso che faccio? :l'assistente sociale tra pratica e teoria /Tinina AmadeiMilano :F. Angeli,1996299 p. ;22 cm.Servizio sociale e formazione ;9Assistenti sociali - Professione.b1146352101-03-1701-07-02991001098419707536LE024 SS/C II 912024000008000le021ex DUSS-E0.00-l- 05050.i1165172601-07-02E adesso che faccio?811122UNISALENTOle02101-01-98ma -itait 0103221nam 2200589 450 991082876380332120180613001253.01-4704-0717-5(CKB)3360000000464488(EBL)3114004(SSID)ssj0000888888(PQKBManifestationID)11523055(PQKBTitleCode)TC0000888888(PQKBWorkID)10875473(PQKB)11093563(MiAaPQ)EBC3114004(RPAM)3313904(PPN)195411854(EXLCZ)99336000000046448820140908h19841984 uy 0engur|n|---|||||txtccrDimensions of spaces of Siegel cusp forms of degree two and three /Minking EieProvidence, Rhode Island, United States :American Mathematical Society,1984.©19841 online resource (194 p.)Memoirs of the American Mathematical Society,0065-9266 ;Volume 50, Number 304"July 1984, Volume 50, Number 304 (first of 3 numbers)"--Cover.0-8218-2305-1 Includes bibliographical references.""2.3 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (I)""""2.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points (II)""; ""2.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points""; ""2.6 Contributions from conjugacy classes of unipotent elements""; ""2.7 A dimension formula for the vector space of cusp forms with respect to Sp (2 , Z)""; ""CHAPTER III: REPRESENTATIVES OF CONJUGACY CLASSES OF ELEMENTS OF Sp (3 , Z) IN Sp (3 , R)""; ""3.1 Introduction""""4.4 Contributions from conjugacy classes of elements having a one-dimensional set of fixed points""""4.5 Contributions from conjugacy classes of elements having a two-dimensional set of fixed points""; ""4.6 Second case of conjugacy classes of elements having a one-dimensional set of fixed points""; ""4.7 Second case of conjugacy classes of elements having a two-dimensional set of fixed points""; ""CHAPTER V: CONTRIBUTIONS FROM CONJUGACY CLASSES IN Î?[sub(0)]""; ""5.1 Introduction""; ""5.2 A dimension formula for the principal congruencesubgroup Î?[sub(2)](N)""""5.3 Contributions from Î?[sub(0)](I)""""5.4 A dimension formula for the principal congruence subgroup Î?[sub(3)](N)""; ""5.5 Contributions from Î?[sub(0)](II)""; ""5.6 A final remark""; ""REFERENCES""Memoirs of the American Mathematical Society ;Volume 50, Number 304.Cusp forms (Mathematics)Selberg trace formulaIntegralsCusp forms (Mathematics)Selberg trace formula.Integrals.512/.72Eie Minking1952-1608892MiAaPQMiAaPQMiAaPQBOOK9910828763803321Dimensions of spaces of Siegel cusp forms of degree two and three4097142UNINA